MSU Disentanglement Analysis Software
- Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
This software is used to disentangle the forced-versus-unforced components of tropospheric temperature change over the satellite era (after 1979) using maps of surface temperature change as a predictor. In general, the software assembles training datasets (from pre-computed surface temperature trend maps and domain averaged tropospheric warming rates), trains statistical/machine learning (ML) algorithms, applies the trained statistical/ML model to climate model data and observations, and then saves the results. A leave-one-out approach is used in which the statistical/ML models are iteratively trained on (N- 1) climate model and then applied to the remaining climate model (and observations). Each model includes a large ensemble (i.e., >10) of model simulations. The software relies on scikit-learn ridge regression, PLS regression, and neural network algorithms.
- Short Name / Acronym:
- MDAS
- Site Accession Number:
- LLNL-CODE-840617
- Software Type:
- Scientific
- License(s):
- MIT License
- Research Organization:
- Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
- Sponsoring Organization:
- USDOE National Nuclear Security Administration (NNSA)Primary Award/Contract Number:AC52-07NA27344
- DOE Contract Number:
- AC52-07NA27344
- Code ID:
- 95418
- OSTI ID:
- code-95418
- Country of Origin:
- United States