Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Simulation-Based Inference for Neutrino Interaction Model Tuning

Software ·
DOI:https://doi.org/10.11578/dc.20251021.1· OSTI ID:code-167867 · Code ID:167867
 [1]
  1. Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

This project demonstrates, for the first time, the application of simulation-based inference (SBI) techniques to tune neutrino–nucleus interaction models. Using a mock dataset based on the MicroBooNE tuning of the GENIE event generator, our approach employs a Neural Posterior Estimator (NPE) with Masked Autoregressive Flows (MAF) to infer the posterior distributions of key GENIE parameters directly from simulated histograms. The workflow provides a scalable and amortized framework for performing likelihood-free inference in high-dimensional parameter spaces, offering a pathway to more efficient and uncertainty-aware model tuning for next-generation neutrino experiments such as DUNE and SBND.

Short Name / Acronym:
Neutrino_SBI
Site Accession Number:
FERMILAB-CODE-2025-17-CSA
Software Type:
Scientific
License(s):
Apache License 2.0
Programming Language(s):
Python
Research Organization:
Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)
Sponsoring Organization:
USDOE Office of Science (SC), High Energy Physics (HEP)

Primary Award/Contract Number:
89243024CSC000002
DOE Contract Number:
89243024CSC000002
Code ID:
167867
OSTI ID:
code-167867
Country of Origin:
United States

Similar Records

Simulation-Based Inference for Neutrino Interaction Model Parameter Tuning
Conference · Wed Dec 03 23:00:00 EST 2025 · No journal information · OSTI ID:3008676

Simulation-based inference for neutrino interaction model parameter tuning
Conference · Wed Oct 08 00:00:00 EDT 2025 · No journal information · OSTI ID:2998970

Related Subjects