Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Scaling Linear Algebra Kernels using Remote Memory Access

Conference ·

This paper describes the scalability of linear algebra kernels based on remote memory access approach. The current approach differs from the other linear algebra algorithms by the explicit use of shared memory and remote memory access (RMA) communication rather than message passing. It is suitable for clusters and scalable shared memory systems. The experimental results on large scale systems (Linux-Infiniband cluster, Cray XT) demonstrate consistent performance advantages over ScaLAPACK suite, the leading implementation of parallel linear algebra algorithms used today. For example, on a Cray XT4 for a matrix size of 102400, our RMA-based matrix multiplication achieved over 55 teraflops while ScaLAPACK’s pdgemm measured close to 42 teraflops on 10000 processes.

Research Organization:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
994036
Report Number(s):
PNNL-SA-71737; KJ0402000
Country of Publication:
United States
Language:
English