Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

RHIC electron lens beam transport system design considerations

Technical Report ·
DOI:https://doi.org/10.2172/993470· OSTI ID:993470

To apply head-on beam-beam compensation for RHIC, two electron lenses are designed and will be installed at IP10. Electron beam transport system is one of important subsystem, which is used to transport electron beam from electron gun side to collector side. This system should be able to change beam size inside superconducting magnet and control beam position with 5 mm in horizontal and vertical plane. Some other design considerations for this beam transport system are also reported in this paper. The head-on beam-beam effect is one of important nonlinear source in storage ring and linear colliders, which have limited the luminosity improvement of many colliders, such as SppS, Tevatron and RHIC. In order to enhance the performance of colliders, beam-beam effects can be compensated with direct space charge compensation, indirect space charge compensation or betatron phase cancellation scheme. Like other colliders, indirect space charge compensation scheme (Electron Lens) was also proposed for Relativistic Heavy Ion Collider (RHIC) beam-beam compensation at Brookhaven National Laboratory. The two similar electron lenses are located in IR10 between the DX magnets. One RHIC electron lens consists of one DC electron gun, one superconducting magnet, one electron collector and beam transport system.

Research Organization:
Brookhaven National Laboratory (BNL) Relativistic Heavy Ion Collider
Sponsoring Organization:
DOE - Office Of Science
DOE Contract Number:
AC02-98CH10886
OSTI ID:
993470
Report Number(s):
BNL--94318-2010-IR; KB0202011
Country of Publication:
United States
Language:
English