Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Thermoresponsive magnetic micelles for simultaneous magnetic hyperthermia and drug delivery.

Conference ·
OSTI ID:992831

Hyperthermia has been shown to be a potentially effective therapeutic modality in cancer treatment as it intensifies the efficacy of chemotherapy. The hyperthermia has a good synergic effect with chemotherapy. Their sensitivity to chemotherapy after hyperthermia treatment is increased. Therefore, a simultaneous hyperthermia and chemotherapy can be a new approach for cancer treatment. Multifunctional magnetic nanoparticles with thermoresponsive polymer allowed the simultaneous cancer therapy because the functions of thermo triggered drug release and heating for hyperthermia can be performed simultaneously by applied magnetic field. In our study, magnetic nanoparticles loaded thermoresponsive micelles were synthesized for the simultaneous magnetic hyperthermia and chemotherapy. The micelles made of amphiphilic block copolymer of poly(N-isopropylacrylamide-co-acrylamide)-block-poly(e-caprolaction), P(NIPAAm-co-AAm)-b-PCL, were combined with magnetic nanoparticles and drug which are self-assembled at the hydrophobic core. We synthesized iron oxide nanoparticles having a narrow size distribution of 6 nm by the high-temperature diol reduction in benzyl ether. The amphiphilic block copolymer, P(NIPAAm-co-AAm)-b-PCL was synthesized by radical polymerization for copolymer and ring opening polymerization for block copolymer, respectively. Iron oxide loaded thermoresponsive micelles were formed by solvent-evaporation method. Simultaneous heating and drug release was demonstrated with the anticancer drug doxorubicin.

Research Organization:
Argonne National Laboratory (ANL)
Sponsoring Organization:
SC
DOE Contract Number:
AC02-06CH11357
OSTI ID:
992831
Report Number(s):
ANL/MSD/CP-63777
Country of Publication:
United States
Language:
ENGLISH