skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electron Neutrino Appearance in the MINOS Experiment

Thesis/Dissertation ·
DOI:https://doi.org/10.2172/992271· OSTI ID:992271
 [1]
  1. Univ. College London, Bloomsbury (United Kingdom)

The MINOS experiment is a long-baseline neutrino oscillation experiment which sends a high intensity muon neutrino beam through two functionally identical detectors, a Near detector at the Fermi National Accelerator Laboratory in Illinois, 1km from the beam source, and a Far detector, 734km away, in the Soudan Mine in Minnesota. MINOS may be able to measure the neutrino mixing angle parameter sin213 for the rst time. Detector granularity, however, makes it very hard to distinguish any e appearance signal events characteristic of a non-zero value of θ 13 from background neutral current (NC) and short-track vμ charged current (CC) events. Also, uncertainties in the hadronic shower modeling in the kinematic region characteristic of this analysis are relatively large. A new data-driven background decomposition method designed to address those issues is developed and its results presented. By removing the long muon tracks from vμ-CC events, the Muon Removed Charge Current (MRCC) method creates independent pseudo-NC samples that can be used to correct the MINOS Monte Carlo to agree with the high-statistics Near detector data and to decompose the latter into components so as to predict the expected Far detector background. The MRCC method also provides an important cross-check in the Far detector to test the background in the signal selected region. MINOS finds a 1.0-1.5 σ ve-CC excess above background in the Far detector data, depending on method used, for a total exposure of 3.14 x 1020 protons-on-target. Interpreting this excess as signal, MINOS can set limits on sin213. Using the MRCC method, MINOS sets a limit of sin2 2 θ 13 < 0.265 at the 90% confidence limit for a CP-violating phase δ = 0.

Research Organization:
Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC02-07CH11359
OSTI ID:
992271
Report Number(s):
FERMILAB-THESIS-2010-41; TRN: US1007776
Country of Publication:
United States
Language:
English