skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Deposition Velocities of Non-Newtonian Slurries in Pipelines: Complex Simulant Testing

Abstract

One of the concerns expressed by the External Flowsheet Review Team (EFRT) is about the potential for pipe plugging at the Waste Treatment and Immobilization Plant (WTP). Per the review’s executive summary, “Piping that transports slurries will plug unless it is properly designed to minimize this risk. This design approach has not been followed consistently, which will lead to frequent shutdowns due to line plugging.” To evaluate the potential for plugging, deposition-velocity tests were performed on several physical simulants to determine whether the design approach is conservative. Deposition velocity is defined as the velocity below which particles begin to deposit to form a moving bed of particles on the bottom of a straight horizontal pipe during slurry-transport operations. The deposition velocity depends on the system geometry and the physical properties of the particles and fluid. An experimental program was implemented to test the stability-map concepts presented in WTP-RPT-175 Rev. 01. Two types of simulant were tested. The first type of simulant was similar to the glass-bead simulants discussed in WTP-RPT-175 Rev. 0 ; it consists of glass beads with a nominal particle size of 150 µm in a kaolin/water slurry. The initial simulant was prepared at a target yield stressmore » of approximately 30 Pa. The yield stress was then reduced, stepwise, via dilution or rheological modifiers, ultimately to a level of <1 Pa. At each yield-stress step, deposition-velocity testing was performed. Testing over this range of yield-stress bounds the expected rheological operating window of the WTP and allows the results to be compared to stability-map predictions for this system. The second simulant was a precipitated hydroxide that simulates HLW pretreated sludge from Hanford waste tank AZ-101. Testing was performed in a manner similar to that for the first simulant over a wide range of yield stresses; however, an additional test of net-positive suction-head required (NPSHR) was performed at each yield stress condition. Unlike the previous simulant, the sizes and densities of the particles that can deposit in the piping are a result of the simulant precipitation process; there is expected to be a complex mixture of particles of various sizes and densities that make it difficult to predict a stability map. The objective of the testing is to observe whether behavior consistent with the stability-map concept occurs in complex simulants with mixtures of different sizes and densities.« less

Authors:
; ; ; ; ; ; ; ; ;
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
992020
Report Number(s):
PNNL-18316
830403000; TRN: US1100570
DOE Contract Number:
AC05-76RL01830
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
12 MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; SLURRY PIPELINES; FLOW BLOCKAGE; FLOW RATE; PARTICLE SIZE; PRECIPITATION; SLUDGES; SLURRIES; TESTING; RADIOACTIVE WASTE FACILITIES; HIGH-LEVEL RADIOACTIVE WASTES

Citation Formats

Poloski, Adam P., Bonebrake, Michael L., Casella, Andrew M., Johnson, Michael D., Toth, James J., Adkins, Harold E., Chun, Jaehun, Denslow, Kayte M., Luna, Maria, and Tingey, Joel M. Deposition Velocities of Non-Newtonian Slurries in Pipelines: Complex Simulant Testing. United States: N. p., 2009. Web. doi:10.2172/992020.
Poloski, Adam P., Bonebrake, Michael L., Casella, Andrew M., Johnson, Michael D., Toth, James J., Adkins, Harold E., Chun, Jaehun, Denslow, Kayte M., Luna, Maria, & Tingey, Joel M. Deposition Velocities of Non-Newtonian Slurries in Pipelines: Complex Simulant Testing. United States. doi:10.2172/992020.
Poloski, Adam P., Bonebrake, Michael L., Casella, Andrew M., Johnson, Michael D., Toth, James J., Adkins, Harold E., Chun, Jaehun, Denslow, Kayte M., Luna, Maria, and Tingey, Joel M. 2009. "Deposition Velocities of Non-Newtonian Slurries in Pipelines: Complex Simulant Testing". United States. doi:10.2172/992020. https://www.osti.gov/servlets/purl/992020.
@article{osti_992020,
title = {Deposition Velocities of Non-Newtonian Slurries in Pipelines: Complex Simulant Testing},
author = {Poloski, Adam P. and Bonebrake, Michael L. and Casella, Andrew M. and Johnson, Michael D. and Toth, James J. and Adkins, Harold E. and Chun, Jaehun and Denslow, Kayte M. and Luna, Maria and Tingey, Joel M.},
abstractNote = {One of the concerns expressed by the External Flowsheet Review Team (EFRT) is about the potential for pipe plugging at the Waste Treatment and Immobilization Plant (WTP). Per the review’s executive summary, “Piping that transports slurries will plug unless it is properly designed to minimize this risk. This design approach has not been followed consistently, which will lead to frequent shutdowns due to line plugging.” To evaluate the potential for plugging, deposition-velocity tests were performed on several physical simulants to determine whether the design approach is conservative. Deposition velocity is defined as the velocity below which particles begin to deposit to form a moving bed of particles on the bottom of a straight horizontal pipe during slurry-transport operations. The deposition velocity depends on the system geometry and the physical properties of the particles and fluid. An experimental program was implemented to test the stability-map concepts presented in WTP-RPT-175 Rev. 01. Two types of simulant were tested. The first type of simulant was similar to the glass-bead simulants discussed in WTP-RPT-175 Rev. 0 ; it consists of glass beads with a nominal particle size of 150 µm in a kaolin/water slurry. The initial simulant was prepared at a target yield stress of approximately 30 Pa. The yield stress was then reduced, stepwise, via dilution or rheological modifiers, ultimately to a level of <1 Pa. At each yield-stress step, deposition-velocity testing was performed. Testing over this range of yield-stress bounds the expected rheological operating window of the WTP and allows the results to be compared to stability-map predictions for this system. The second simulant was a precipitated hydroxide that simulates HLW pretreated sludge from Hanford waste tank AZ-101. Testing was performed in a manner similar to that for the first simulant over a wide range of yield stresses; however, an additional test of net-positive suction-head required (NPSHR) was performed at each yield stress condition. Unlike the previous simulant, the sizes and densities of the particles that can deposit in the piping are a result of the simulant precipitation process; there is expected to be a complex mixture of particles of various sizes and densities that make it difficult to predict a stability map. The objective of the testing is to observe whether behavior consistent with the stability-map concept occurs in complex simulants with mixtures of different sizes and densities.},
doi = {10.2172/992020},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2009,
month = 7
}

Technical Report:

Save / Share:
  • The WTP pipe plugging issue, as stated by the External Flowsheet Review Team (EFRT) Executive Summary, is as follows: “Piping that transports slurries will plug unless it is properly designed to minimize this risk. This design approach has not been followed consistently, which will lead to frequent shutdowns due to line plugging.” A strategy was employed to perform critical-velocity tests on several physical simulants. Critical velocity is defined as the point where a stationary bed of particles deposits on the bottom of a straight horizontal pipe during slurry transport operations. Results from the critical velocity testing provide an indication ofmore » slurry stability as a function of fluid rheological properties and transport conditions. The experimental results are compared to the WTP design guide on slurry transport velocity in an effort to confirm minimum waste velocity and flushing velocity requirements as established by calculations and critical line velocity correlations in the design guide. The major findings of this testing is discussed below. Experimental results indicate that the use of the Oroskar and Turian (1980) correlation in the design guide is conservative—Slurry viscosity has a greater affect on particles with a large surface area to mass ratio. The increased viscous forces on these particles result in a decrease in predicted critical velocities from this traditional industry derived equations that focus on particles large than 100 μm in size. Since the Hanford slurry particles generally have large surface area to mass ratios, the reliance on such equations in the Hall (2006) design guide is conservative. Additionally, the use of the 95% percentile particle size as an input to this equation is conservative. However, test results indicate that the use of an average particle density as an input to the equation is not conservative. Particle density has a large influence on the overall result returned by the correlation. Lastly, the viscosity correlation used in the WTP design guide has been shown to be inaccurate for Hanford waste feed materials. The use of the Thomas (1979) correlation in the design guide is not conservative—In cases where 100% of the particles are smaller than 74 μm or particles are considered to be homogeneous due to yield stress forces suspending the particles the homogeneous fraction of the slurry can be set to 100%. In such cases, the predicted critical velocity based on the conservative Oroskar and Turian (1980) correlation is reduced to zero and the design guide returns a value from the Thomas (1979) correlation. The measured data in this report show that the Thomas (1979) correlation predictions often fall below that measured experimental values. A non-Newtonian deposition velocity design guide should be developed for the WTP— Since the WTP design guide is limited to Newtonian fluids and the WTP expects to process large quantities of such materials, the existing design guide should be modified address such systems. A central experimental finding of this testing is that the flow velocity required to reach turbulent flow increases with slurry rheological properties due to viscous forces dampening the formation of turbulent eddies. The flow becomes dominated by viscous forces rather than turbulent eddies. Since the turbulent eddies necessary for particle transport are not present, the particles will settle when crossing this boundary called the transitional deposition boundary. This deposition mechanism should be expected and designed for in the WTP.« less
  • The External Flowsheet Review Team (EFRT) has identified the issues relating to the Waste Treatment and Immobilization Plant (WTP) pipe plugging. Per the review’s executive summary, “Piping that transports slurries will plug unless it is properly designed to minimize this risk. This design approach has not been followed consistently, which will lead to frequent shutdowns due to line plugging.” To evaluate the potential for plugging, testing was performed to determine critical velocities for the complex WTP piping layout. Critical velocity is defined as the point at which a moving bed of particles begins to form on the pipe bottom duringmore » slurry-transport operations. Pressure drops across the fittings of the test pipeline were measured with differential pressure transducers, from which the critical velocities were determined. A WTP prototype flush system was installed and tested upon the completion of the pressure-drop measurements. We also provide the data for the overflow relief system represented by a WTP complex piping geometry with a non-Newtonian slurry. A waste simulant composed of alumina (nominally 50 μm in diameter) suspended in a kaolin clay slurry was used for this testing. The target composition of the simulant was 10 vol% alumina in a suspending medium with a yield stress of 3 Pa. No publications or reports are available to confirm the critical velocities for the complex geometry evaluated in this testing; therefore, for this assessment, the results were compared to those reported by Poloski et al. (2008) for which testing was performed for a straight horizontal pipe. The results of the flush test are compared to the WTP design guide 24590-WTP-GPG-M-0058, Rev. 0 (Hall 2006) in an effort to confirm flushing-velocity requirements.« less
  • The Hanford Waste Vitrification Plant was intended to convert selected, pretreated defense high-level waste and transuranic waste from the Hanford Site into a borosilicate glass. A full-scale testing program was conducted with nonradioactive waste simulants to develop information for process and equipment design of the feed-preparation system. The equipment systems tested included the Slurry Receipt and Adjustment Tank, Slurry Mix Evaporator, and Melter-Feed Tank. The areas of data generation included heat transfer (boiling, heating, and cooling), slurry mixing, slurry pumping and transport, slurry sampling, and process chemistry. 13 refs., 129 figs., 68 tabs.
  • A physical separation method (i.e. sieving) was investigated to determine particle size distribution in non-radioactive sludge slurry simulants with the goal of implementation into the SRNL (Savannah River National Laboratory) shielded cells for use with radioactive sludge slurries. The investigation included obtaining the necessary experimental equipment, developing accessory equipment for use with the sieve shaker (to be able to sieve simulant slurries with aqueous solutions), sieving three different simulant slurries through a number of sieves and determining the particle size distribution gravimetrically, and developing a sufficient cleaning protocol of the sieves for re-use. The experimental protocol involved successive sieving ofmore » a NIST standard (to check the particle size retention of the sieves) and three non-radioactive slurry simulants (Batch 3 Tank 40 Test 3, Tank 40 Drum 3 and CETL Sludge Batch 2, which had been previously characterized by Microtrac analysis) through smaller and smaller sieves (150 microns x 5 microns) via use of the wet sieving system or by hand. For each of the three slurries, duplicate experiments were carried out using filtered supernate and DI water (to check the accuracy of the method versus Microtrac data) to sieve the slurry. Particle size determinations using the wet sieving system with DI water agree well with Microtrac data on a volume basis and in some cases the sieving data may be more accurate particularly if the material sieved had large particles. A correction factor had to be applied to data obtained from experiments done with supernate due to the dissolved solids which dried upon the sieves in the drying stage of the experiments. Upon subtraction of the correction factors, the experimental results were very similar to those obtained with DI water. It should be noted that approximately 250 mL of each of three simulant slurries was necessary to have enough filtered supernate available to carry out the experiments. The experimental results for the slurries are below with Microtrac data. The design of the experimental equipment was sufficient initially, but some pieces of the equipment began failing over time due to the caustic nature of the supernate and the vibrations from the sieve shaker. It is therefore recommended that upgrades to the experimental equipment be done before implementation into the SRNL shielded cells. Theses upgrades include using manipulator friendly connections, changing brass parts for stainless steel parts, using Teflon rather than polycarbonate, and possibly a change of pumps used to re-circulate the sieving fluid.« less