skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Sustainable biochar to mitigate global climate change

Abstract

Production of biochar (the carbon-rich solid formed by pyrolysis of biomass), in combination with its storage in soils, has been suggested as a means to abate anthropogenic climate change, while simultaneously increasing crop yields. The climate mitigation potential stems primarily from the highly recalcitrant nature of biochar, which slows the rate at which photosynthetically fixed carbon is returned to the atmosphere. Significant uncertainties exist, however, regarding the impact, capacity, and sustainability of biochar for carbon capture and storage when scaled to the global level. Previous estimates, based on simple assumptions, vary widely. Here we show that, subject to strict environmental and modest economic constraints on biomass procurement and biochar production methods, annual net emissions of CO2, CH4 and N2O could be reduced by 1.1 - 1.9 Pg CO2-C equivalent (CO2-Ce)/yr (7 - 13% of current anthropogenic CO2-Ce emissions; 1Pg = 1 Gt). Over one century, cumulative net emissions of these gases could be reduced by 72-140 Pg CO2-Ce. The lower end of this range uses currently untapped residues and wastes; the upper end requires substantial alteration to global biomass management, but would not endanger food security, habitat or soil conservation. Half the avoided emissions are due to the net Cmore » sequestered as biochar, one-quarter to replacement of fossil-fuel energy by pyrolysis energy, and one-quarter to avoided emissions of CH4 and N2O. The total mitigation potential is 18-30% greater than if the same biomass were combusted to produce energy. Despite limited data for the decomposition rate of biochar in soils and the effects of biochar additions on soil greenhouse-gas fluxes, sensitivity within realistic ranges of these parameters is small, resulting in an uncertainty of ±8% (±1 s.d.) in our estimates. Achieving these mitigation results requires, however, that biochar production be performed using only low-emissions technologies and feedstocks obtained sustainably, with minimal carbon debt incurred from land-use change.« less

Authors:
; ; ; ;
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
990551
Report Number(s):
PNNL-SA-68680
KP1702020; TRN: US201020%%409
DOE Contract Number:
AC05-76RL01830
Resource Type:
Journal Article
Resource Relation:
Journal Name: Nature Communications, 1:Article No. 56; Journal Volume: 1
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; BIOMASS; CARBON DIOXIDE; CARBON SEQUESTRATION; CLIMATIC CHANGE; CROPS; ECONOMICS; FOOD; GASES; HABITAT; LAND USE; METHANE; MITIGATION; NITROUS OXIDE; PYROLYSIS; RESIDUES; SENSITIVITY; SOIL CONSERVATION; SOILS; STORAGE; WASTES; biochar; climate change mitigation; carbon sequestration; bioenergy; CO2; N2O; CH4; carbon dioxide; nitrous oxide; methane; soil carbon; biomass; pyrolysis; greenhouse gases

Citation Formats

Woolf, Dominic, Amonette, James E., Street-Perrott, F. A., Lehmann, Johannes C., and Joseph, Stephen. Sustainable biochar to mitigate global climate change. United States: N. p., 2010. Web. doi:10.1038/ncomms1053.
Woolf, Dominic, Amonette, James E., Street-Perrott, F. A., Lehmann, Johannes C., & Joseph, Stephen. Sustainable biochar to mitigate global climate change. United States. doi:10.1038/ncomms1053.
Woolf, Dominic, Amonette, James E., Street-Perrott, F. A., Lehmann, Johannes C., and Joseph, Stephen. 2010. "Sustainable biochar to mitigate global climate change". United States. doi:10.1038/ncomms1053.
@article{osti_990551,
title = {Sustainable biochar to mitigate global climate change},
author = {Woolf, Dominic and Amonette, James E. and Street-Perrott, F. A. and Lehmann, Johannes C. and Joseph, Stephen},
abstractNote = {Production of biochar (the carbon-rich solid formed by pyrolysis of biomass), in combination with its storage in soils, has been suggested as a means to abate anthropogenic climate change, while simultaneously increasing crop yields. The climate mitigation potential stems primarily from the highly recalcitrant nature of biochar, which slows the rate at which photosynthetically fixed carbon is returned to the atmosphere. Significant uncertainties exist, however, regarding the impact, capacity, and sustainability of biochar for carbon capture and storage when scaled to the global level. Previous estimates, based on simple assumptions, vary widely. Here we show that, subject to strict environmental and modest economic constraints on biomass procurement and biochar production methods, annual net emissions of CO2, CH4 and N2O could be reduced by 1.1 - 1.9 Pg CO2-C equivalent (CO2-Ce)/yr (7 - 13% of current anthropogenic CO2-Ce emissions; 1Pg = 1 Gt). Over one century, cumulative net emissions of these gases could be reduced by 72-140 Pg CO2-Ce. The lower end of this range uses currently untapped residues and wastes; the upper end requires substantial alteration to global biomass management, but would not endanger food security, habitat or soil conservation. Half the avoided emissions are due to the net C sequestered as biochar, one-quarter to replacement of fossil-fuel energy by pyrolysis energy, and one-quarter to avoided emissions of CH4 and N2O. The total mitigation potential is 18-30% greater than if the same biomass were combusted to produce energy. Despite limited data for the decomposition rate of biochar in soils and the effects of biochar additions on soil greenhouse-gas fluxes, sensitivity within realistic ranges of these parameters is small, resulting in an uncertainty of ±8% (±1 s.d.) in our estimates. Achieving these mitigation results requires, however, that biochar production be performed using only low-emissions technologies and feedstocks obtained sustainably, with minimal carbon debt incurred from land-use change.},
doi = {10.1038/ncomms1053},
journal = {Nature Communications, 1:Article No. 56},
number = ,
volume = 1,
place = {United States},
year = 2010,
month = 8
}
  • Scientific findings regarding global climate change and deforestation led industrialized nations to bring both issues to the forefront of an international dialogue on the environment. International institutional attention to deforestation began in 1985 with the Tropical Forestry Action Program which helped countries develop plans for sustainable forest management. A few years later, the International Tropical Timber Organization, though designed to facilitate tropical timber trade, adopted guidelines for sustainable management of tropical production forests. Next, the activities before and after UNCED established a general set of forest principles and regional efforts to define sustainable forest management. The World Bank has alsomore » sought to reduce past lending failures that led to deforestation and other environmental degradation, through programmatic redirections and macro-economic policy reforms. Finally, through innovative financial incentives, industrialized and developing countries are identifying opportunities to offset debts and increase economic development without depleting forest resources. Collectively, these efforts have let to some trends that support sustainable forest management and mitigate climate change. The upcoming years will see a proactive set of multilateral programs to address deforestation, an increasing link between trade and the environment, and more uses of financial incentives to encourage sustainable forest management.« less
  • The Clean Development Mechanism (CDM) of the Kyoto Protocol aims to reduce greenhouse gas emissions in developing countries and at the same time to assist these countries in sustainable development. While composting as a suitable mitigation option in the waste sector can clearly contribute to the former goal there are indications that high rents can also be achieved regarding the latter. In this article composting is compared with other CDM project types inside and outside the waste sector with regards to both project numbers and contribution to sustainable development. It is found that, despite the high number of waste projects,more » composting is underrepresented and a major reason for this fact is identified. Based on a multi-criteria analysis it is shown that composting has a higher potential for contribution to sustainable development than most other best in class projects. As these contributions can only be assured if certain requirements are followed, eight key obligations are presented.« less
  • In this paper, sustainable forest management is discussed within the historical and theoretical framework of the sustainable development debate. The various criteria and indicators for sustainable forest management put forth by different institutions are critically explored. Specific types of climate change mitigation policies/projects in the forest sector are identified and examined in the light of the general criteria for sustainable forest management. Areas of compatibility and contradiction between the climate mitigation objectives and the minimum criteria for sustainable forest management are identified and discussed. Emphasis is put on the problems of monitoring and verifying carbon benefits associated with such projectsmore » given their impacts on pre-existing policy objectives on sustainable forest management. The implications of such policy interactions on assignment of carbon credits from forest projects under Joint Implementation/Activities Implemented Jointly initiatives are discussed. The paper concludes that a comprehensive monitoring and verification regime must include an impact assessment on the criteria covered under other agreements such as the Biodiversity and/or Desertification Conventions. The actual carbon credit assigned to a specific project should at least take into account the negative impacts on the criteria for sustainable forest management. The value of the impacts and/or the procedure to evaluate them need to be established by interested parties such as the Councils of the respective Conventions.« less
  • Alternative energy balances aimed to mitigate greenhouse gas (GHG) emissions are developed as alternatives to the baseline energy balance. The section of mitigation options is based on the results of the GHG emission inventory for the 1987-1992 period. The energy sector is the main contributor to the total CO{sub 2} emissions of Bulgaria. Stationary combustion for heat and electricity production as well as direct end-use combustion amounts to 80% of the total emissions. The parts of the energy network that could have the biggest influence on GHG emission reduction are identified. The potential effects of the following mitigation measures aremore » discussed: rehabilitation of the combustion facilities currently in operation; repowering to natural gas; reduction of losses in thermal and electrical transmission and distribution networks; penetration of new combustion technologies; tariff structure improvement; renewable sources for electricity and heat production; waste-heat utilization; and supply of households with natural gas to substitute for electricity in space heating and cooking. The total available and the achievable potentials are estimated and the implementation barriers are discussed. 3 refs.« less