skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An Overview of Liquid Fluoride Salt Heat Transport Systems

Technical Report ·
DOI:https://doi.org/10.2172/990239· OSTI ID:990239

Heat transport is central to all thermal-based forms of electricity generation. The ever increasing demand for higher thermal efficiency necessitates power generation cycles transitioning to progressively higher temperatures. Similarly, the desire to provide direct thermal coupling between heat sources and higher temperature chemical processes provides the underlying incentive to move toward higher temperature heat transfer loops. As the system temperature rises, the available materials and technology choices become progressively more limited. Superficially, fluoride salts at {approx}700 C resemble water at room temperature being optically transparent and having similar heat capacity, roughly three times the viscosity, and about twice the density. Fluoride salts are a leading candidate heat-transport material at high temperatures. Fluoride salts have been extensively used in specialized industrial processes for decades, yet they have not entered widespread deployment for general heat transport purposes. This report does not provide an exhaustive screening of potential heat transfer media and other high temperature liquids such as alkali metal carbonate eutectics or chloride salts may have economic or technological advantages. A particular advantage of fluoride salts is that the technology for their use is relatively mature as they were extensively studied during the 1940s-1970s as part of the U.S. Atomic Energy Commission's program to develop molten salt reactors (MSRs). However, the instrumentation, components, and practices for use of fluoride salts are not yet developed sufficiently for commercial implementation. This report provides an overview of the current understanding of the technologies involved in liquid salt heat transport (LSHT) along with providing references to the more detailed primary information resources. Much of the information presented here derives from the earlier MSR program. However, technology has evolved over the intervening years, and this report also describes more recently developed technologies such as dry gas seals. This report also provides a high-level, parametric evaluation of LSHT loop performance to allow general intercomparisons between heat-transport fluid options as well as provide an overview of the properties and requirements for a representative loop. A compilation of relevant thermophysical properties of useful fluoride salts is also included for salt heat transport systems. Fluoride salts can be highly corrosive depending on the container materials selected, the salt chemistry, and the operating procedures used. The report includes an overview of the state-of-the-art in reduction-oxidation chemistry control methodologies employed to minimize corrosion issues. Salt chemistry control technology, however, remains at too low a level of understanding for widespread industrial usage. Loop operational issues such as start-up procedures and system freeze-up vulnerability are also discussed. Liquid fluoride salts are a leading candidate heat transport medium for high-temperature applications. This report provides an overview of the current status of liquid salt heat transport technology. The report includes a high-level, parametric evaluation of liquid fluoride salt heat transport loop performance to allow intercomparisons between heat-transport fluid options as well as providing an overview of the properties and requirements for a representative loop. Much of the information presented here derives from the earlier molten salt reactor program and a significant advantage of fluoride salts, as high temperature heat transport media is their consequent relative technological maturity. The report also includes a compilation of relevant thermophysical properties of useful heat transport fluoride salts. Fluoride salts are both thermally stable and with proper chemistry control can be relatively chemically inert. Fluoride salts can, however, be highly corrosive depending on the container materials selected, the salt chemistry, and the operating procedures used. The report also provides an overview of the state-of-the-art in reduction-oxidation chemistry control methodologies employed to minimize salt corrosion as well as providing a general discussion of heat transfer loop operational issues such as start-up procedures and freeze-up vulnerability.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE Office of Nuclear Energy (NE)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
990239
Report Number(s):
ORNL/TM-2010/156; AF3670300; NEAF265
Country of Publication:
United States
Language:
English