skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Passive Measurement of Hydrogen Ground State Rotational and Vibrational Temperatures in Kinetic Plasmas

Technical Report ·
DOI:https://doi.org/10.2172/988887· OSTI ID:988887

A dipole-quadrupole electron-impact excitation model, consistent with molecular symmetry rules, is presented to fit ro-vibronic spectra of the hydrogen Fulcher-α Q-branch line emissions for passively measuring the rotational temperature of hydrogen neutral molecules in kinetic plasmas with the coronal equilibrium approximation. A quasi-rotational temperature and quadrupole contribution factor are adjustable parameters in the model. Quadrupole excitation is possible due to a violation of the 1st Born approximation for low to medium energy electrons (up to several hundred eV). The Born-Oppenheimer and Franck-Condon approximations are implicitly shown to hold. A quadrupole contribution of 10% is shown to fit experimental data at several temperatures from different experiments with electron energies from several to 100 eV. A convenient chart is produced to graphically determine the vibrational temperature of the hydrogen molecules from diagonal band intensities, if the ground state distribution is Boltzmann. Hydrogen vibrational modes are long-lived, surviving up to thousands of wall collisions, consistent with multiple other molecular dynamics computational results. The importance of inter-molecular collisions during a plasma pulse are also discussed.

Research Organization:
Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
DE-AC02-09CH11466
OSTI ID:
988887
Report Number(s):
PPPL-4548; TRN: US1007027
Country of Publication:
United States
Language:
English