skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Massively Parallel Latent Semantic Analyzes using a Graphics Processing Unit

Journal Article · · Journal of Undergraduate Research
OSTI ID:986774

Latent Semantic Indexing (LSA) aims to reduce the dimensions of large Term-Document datasets using Singular Value Decomposition. However, with the ever expanding size of data sets, current implementations are not fast enough to quickly and easily compute the results on a standard PC. The Graphics Processing Unit (GPU) can solve some highly parallel problems much faster than the traditional sequential processor (CPU). Thus, a deployable system using a GPU to speedup large-scale LSA processes would be a much more effective choice (in terms of cost/performance ratio) than using a computer cluster. Due to the GPU s application-specific architecture, harnessing the GPU s computational prowess for LSA is a great challenge. We present a parallel LSA implementation on the GPU, using NVIDIA Compute Unified Device Architecture and Compute Unified Basic Linear Algebra Subprograms. The performance of this implementation is compared to traditional LSA implementation on CPU using an optimized Basic Linear Algebra Subprograms library. After implementation, we discovered that the GPU version of the algorithm was twice as fast for large matrices (1000x1000 and above) that had dimensions not divisible by 16. For large matrices that did have dimensions divisible by 16, the GPU algorithm ran five to six times faster than the CPU version. The large variation is due to architectural benefits the GPU has for matrices divisible by 16. It should be noted that the overall speeds for the CPU version did not vary from relative normal when the matrix dimensions were divisible by 16. Further research is needed in order to produce a fully implementable version of LSA. With that in mind, the research we presented shows that the GPU is a viable option for increasing the speed of LSA, in terms of cost/performance ratio.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE Laboratory Directed Research and Development (LDRD) Program
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
986774
Journal Information:
Journal of Undergraduate Research, Vol. IX
Country of Publication:
United States
Language:
English