Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Iterative Self-Dual Reconstruction on Radar Image Recovery

Conference ·
OSTI ID:986492

Imaging systems as ultrasound, sonar, laser and synthetic aperture radar (SAR) are subjected to speckle noise during image acquisition. Before analyzing these images, it is often necessary to remove the speckle noise using filters. We combine properties of two mathematical morphology filters with speckle statistics to propose a signal-dependent noise filter to multiplicative noise. We describe a multiscale scheme that preserves sharp edges while it smooths homogeneous areas, by combining local statistics with two mathematical morphology filters: the alternating sequential and the self-dual reconstruction algorithms. The experimental results show that the proposed approach is less sensitive to varying window sizes when applied to simulated and real SAR images in comparison with standard filters.

Research Organization:
Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US)
Sponsoring Organization:
Computational Research Division
DOE Contract Number:
AC02-05CH11231
OSTI ID:
986492
Report Number(s):
LBNL-3846E
Country of Publication:
United States
Language:
English

Similar Records

SAR Imagery Segmentation by Statistical Region Growing and Hierarchical Merging
Journal Article · Sat May 22 00:00:00 EDT 2010 · Digital Signal Processing · OSTI ID:986490

Superpixels for improved structure and terrain classification using multiple synthetic aperture radar image products
Patent · Tue Aug 07 00:00:00 EDT 2018 · OSTI ID:1469310

Target Detection in SAR Images Based on a Level Set Approach
Journal Article · Mon Sep 01 00:00:00 EDT 2008 · IEEE Transactions on Systems, Man and Cybernetics · OSTI ID:939133