skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Examination of Through-Thickness/Through-Time Phase Evolution during an MOD-Type REBCO Precursor Conversion Using Raman Microsscopy

Journal Article · · Superconductor Science & Technology
 [1];  [1];  [1];  [2];  [2];  [3]
  1. Argonne National Laboratory (ANL)
  2. American Superconductor Corporation, Westborough, MA
  3. ORNL

Through-thickness/through-time composition analyses were made on REBa{sub 2}Cu{sub 3}O{sub 6+x} (REBCO) films prepared from metal-organic deposited (MOD) precursors on a RABiTS (rolling-assisted biaxially textured substrate) template. Y Dy{sub 0.5}Ba{sub 2}Cu{sub 3}O{sub 6 + x} films were fabricated either by a single precursor coating or by two separate, equivalent precursor coatings with an intermediate decomposition. Specimens were quenched at selected times along a heat treatment profile that simulated conditions used by American Superconductor, then examined by Raman microscopy along mechanically milled slopes through the REBCO films. Upon reaching the reaction temperature TR, the precursor initially transforms into a (Y, Dy){sub 2}Cu{sub 2}O{sub 5}, CuO, Cu{sub 2}O, and RE-Ba-F-O phase mix, and this is followed shortly by substrate level REBCO formation that propagates upwards through time. Our results indicate that (1) the single layer (SL) and double layer (DL) films (both {approx} 1.2 {mu}m thick) react to completion at about the same rate and arrive at a similar final composition and (2) some residual Ba-Cu-O phases persist near the top of the fully reacted films. The performance of the SL film was moderately better than that of the DL film, seemingly due to better through-thickness REBCO texture as determined using x-ray diffraction.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
OE USDOE - Office of Electric Transmission and Distribution
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
985303
Journal Information:
Superconductor Science & Technology, Vol. 23, Issue 8; ISSN 0953-2048
Country of Publication:
United States
Language:
English