skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Revisiting Modes of energy generation in sulfate reducing bacteria

Technical Report ·
DOI:https://doi.org/10.2172/985244· OSTI ID:985244

Sulfate reducing bacteria (SRB) play an important role in global sulfur and carbon cycling through their ability to completely mineralize organic matter while respiring sulfate to hydrogen sulfide. They are ubiquitous in anaerobic environments and have the ability to reduce toxic metals like Cr(VI) and U(VI). While SRB have been studied for over three decades, bioenergetic modes of this group of microbes are poorly understood. Desulfovibrio vulgaris strain Hildenborough (DvH) has served as a model SRB over the last decade with the accumulation of transcriptomic, proteomic and metabolic data under a wide variety of stressors. To further investigate the three hypothesized modes of energy generation in this anaerobe we conducted a systematic study involving multiple electron donor and acceptor combinations for growth. DvH was grown at 37oC in a defined medium with (a) lactate + thiosulfate, (b) lactate + sulfite (c) lactate + sulfate, (d) pyruvate + sulfate, (e) H2 + acetate + sulfate, (f) formate + acetate + sulfate, g) formate + sulfate and (h) pyruvate fermentation. Cells were harvested at mid-log phase of growth for all conditions for transcriptomics, when the optical density at 600nm was in the range 0.42-0.5. Initial results indicate that cells grown on lactate do not appear to significantly differentiate their gene expression profiles when presented with different electron acceptors. These profiles however differ significantly from those observed during growth with other electron donors such as H2 and formate, as well as during fermentative growth. Together the gene expression changes in the presence of different electron donors provide insights into the ability of DvH to differentially reduce metals such as Cr(VI). Here we present revised modes of energy generation in DvH in light of this new transcriptomic evidence.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
Earth Sciences Division; Physical Biosciences Division
DOE Contract Number:
DE-AC02-05CH11231
OSTI ID:
985244
Report Number(s):
LBNL-3640E-Poster; TRN: US201016%%2169
Resource Relation:
Conference: 110th General Meeting of the American Society for Microbiology, San Diego, CA, May 23-27, 2010
Country of Publication:
United States
Language:
English