skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: TASK 2.5.7 FIELD EXPERIMENTS TO EVALUATE COOL-COLORED ROOFING

Abstract

Aesthetically pleasing dark roofs can be formulated to reflect like a highly reflective white roof in the near infrared portion of the solar spectrum. New paint pigments increase the near infrared reflectance of exterior finishes by minimizing the absorption of near-infrared radiation (NIR). The boost in the NIR reflectance drops the surface temperatures of roofs and walls, which in turn reduces cooling-energy use and provides savings for the homeowner and relief for the utilities. In moderate and hot climates, a roof surface with high solar reflectance and high thermal emittance was shown by Akbari et al. (2004) and by Parker and Sherwin (1998) to reduce the exterior temperature and produce savings in comfort cooling. The new cool color pigments can potentially reduce emissions of carbon dioxide, which in turn reduces metropolitan heat buildup and urban smog. The pigments can also help conserve water resources otherwise used to clean and process fuel consumed by fossil-fuel driven power plants. Cool roofs also result in a lower ambient temperature that further decreases the need for air conditioning, retards smog formation, and improves thermal comfort. Parker, Sonne and Sherwin (2002) demonstrated that white barrel and white flat tiles reduced cooling energy consumption by 22%more » of the base load used by an adjacent and identical home having direct nailed dark shingles. Part of the savings was due to the reflectance of the white tiles; however, another part was due to the mass of the tile and to the venting occurring within the double batten installation. With, Cherry and Haig (2009) have studied the influence of the thermal mass and batten space ventilation and have found that, referenced to an asphalt shingle system, it can be equivalent to an additional 28 points of solar reflectivity. The double batten arrangement has wooden counter battens laid vertically (soffit-to-ridge) against the roof deck, and then the conventional battens are laid horizontally across the counter battens, providing a nailing surface for the concrete tile. This double batten construction forms an inclined air channel running from the soffit to the ridge. The bottom surface of the channel is formed by the roof decking and is relatively flat and smooth. The top surface is created by the underside of the roofing tiles, and is designed to be an air permeable covering to alleviate the underside air pressure and minimize wind uplift on the tiles. The resulting air flows also have a cooling influence which further complicates prediction of the heat penetrating through the deck because an accurate measure of the airflow is required to predict the heat transfer. Measured temperatures and heat flows at the roof surface, within the attic and at the ceiling of the houses are discussed as well as the power usage to help gauge the benefit of cool-pigmented reflective roof products fitted with and without ventilation above the roof deck. Ventilation occurring above the deck is an inherent feature for tile roof assemblies, and is formed by an air space between the exterior face of the roof sheathing and the underside of the tile. The greater the tile s profile the greater is the effect of the ventilation which herein is termed above-sheathing ventilation (ASV). However, because of the complexity of the thermally induced flow, little credit is allowed by state and federal building codes. ASHRAE (2005) provides empirical data for the effective thermal resistance of plane air spaces. A -in. (0.0191-m) plane air space inclined at 45 with the horizontal has an RUS-0.85 (RSI-0.15) . Our intent is to help further deploy cool color pigments in roofs by conducting field experiments to evaluate the new cool-colored roofing materials in the hot climate of Southern California. The collected data will be used to showcase and market the performance of new cool-roof products and also to help formulate and validate computer codes capable of calculating the heat transfer occurring within the attic and the whole building. Field measures and computer predictions showed that the demonstration home without a NIR-reflective tile coating and without above-sheathing ventilation had the greatest roof deck heat flow and subsequently the highest electrical usage. The house with both NIR paint pigments on the tile and with ASV had the least deck heat flows and therefore caused the home to consume the least amount of energy. The relative performance of the reflective coating and the ventilation individually is less obvious, but it is clear that the combination of a reflective tile with ASV is the preferred solution for the best energy saving.« less

Authors:
 [1];  [1];  [1];  [1];  [1];  [2];  [2];  [2]
  1. ORNL
  2. Lawrence Berkeley National Laboratory (LBNL)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Building Technologies Research and Integration Center
Sponsoring Org.:
Work for Others (WFO)
OSTI Identifier:
981442
Report Number(s):
ORNL/TM-2010/110
TRN: US201012%%1024
DOE Contract Number:  
DE-AC05-00OR22725
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; AIR; AIR CONDITIONING; AIR FLOW; AMBIENT TEMPERATURE; CARBON DIOXIDE; COMPUTER CODES; ENERGY CONSUMPTION; GOVERNMENT BUILDINGS; HEAT FLUX; HEAT TRANSFER; PIGMENTS; POWER PLANTS; REFLECTIVE COATINGS; ROOFS; THERMAL COMFORT; THERMAL MASS; VENTILATION; WATER RESOURCES; field study; cool roof; benchmark; whole house demonstrations

Citation Formats

Miller, William A, Cherry, Nigel J, Allen, Richard Lowell, Childs, Phillip W, Atchley, Jerald Allen, Ronnen, Levinson, Akbari, Hashem, and Berhahl, Paul. TASK 2.5.7 FIELD EXPERIMENTS TO EVALUATE COOL-COLORED ROOFING. United States: N. p., 2010. Web. doi:10.2172/981442.
Miller, William A, Cherry, Nigel J, Allen, Richard Lowell, Childs, Phillip W, Atchley, Jerald Allen, Ronnen, Levinson, Akbari, Hashem, & Berhahl, Paul. TASK 2.5.7 FIELD EXPERIMENTS TO EVALUATE COOL-COLORED ROOFING. United States. doi:10.2172/981442.
Miller, William A, Cherry, Nigel J, Allen, Richard Lowell, Childs, Phillip W, Atchley, Jerald Allen, Ronnen, Levinson, Akbari, Hashem, and Berhahl, Paul. Mon . "TASK 2.5.7 FIELD EXPERIMENTS TO EVALUATE COOL-COLORED ROOFING". United States. doi:10.2172/981442. https://www.osti.gov/servlets/purl/981442.
@article{osti_981442,
title = {TASK 2.5.7 FIELD EXPERIMENTS TO EVALUATE COOL-COLORED ROOFING},
author = {Miller, William A and Cherry, Nigel J and Allen, Richard Lowell and Childs, Phillip W and Atchley, Jerald Allen and Ronnen, Levinson and Akbari, Hashem and Berhahl, Paul},
abstractNote = {Aesthetically pleasing dark roofs can be formulated to reflect like a highly reflective white roof in the near infrared portion of the solar spectrum. New paint pigments increase the near infrared reflectance of exterior finishes by minimizing the absorption of near-infrared radiation (NIR). The boost in the NIR reflectance drops the surface temperatures of roofs and walls, which in turn reduces cooling-energy use and provides savings for the homeowner and relief for the utilities. In moderate and hot climates, a roof surface with high solar reflectance and high thermal emittance was shown by Akbari et al. (2004) and by Parker and Sherwin (1998) to reduce the exterior temperature and produce savings in comfort cooling. The new cool color pigments can potentially reduce emissions of carbon dioxide, which in turn reduces metropolitan heat buildup and urban smog. The pigments can also help conserve water resources otherwise used to clean and process fuel consumed by fossil-fuel driven power plants. Cool roofs also result in a lower ambient temperature that further decreases the need for air conditioning, retards smog formation, and improves thermal comfort. Parker, Sonne and Sherwin (2002) demonstrated that white barrel and white flat tiles reduced cooling energy consumption by 22% of the base load used by an adjacent and identical home having direct nailed dark shingles. Part of the savings was due to the reflectance of the white tiles; however, another part was due to the mass of the tile and to the venting occurring within the double batten installation. With, Cherry and Haig (2009) have studied the influence of the thermal mass and batten space ventilation and have found that, referenced to an asphalt shingle system, it can be equivalent to an additional 28 points of solar reflectivity. The double batten arrangement has wooden counter battens laid vertically (soffit-to-ridge) against the roof deck, and then the conventional battens are laid horizontally across the counter battens, providing a nailing surface for the concrete tile. This double batten construction forms an inclined air channel running from the soffit to the ridge. The bottom surface of the channel is formed by the roof decking and is relatively flat and smooth. The top surface is created by the underside of the roofing tiles, and is designed to be an air permeable covering to alleviate the underside air pressure and minimize wind uplift on the tiles. The resulting air flows also have a cooling influence which further complicates prediction of the heat penetrating through the deck because an accurate measure of the airflow is required to predict the heat transfer. Measured temperatures and heat flows at the roof surface, within the attic and at the ceiling of the houses are discussed as well as the power usage to help gauge the benefit of cool-pigmented reflective roof products fitted with and without ventilation above the roof deck. Ventilation occurring above the deck is an inherent feature for tile roof assemblies, and is formed by an air space between the exterior face of the roof sheathing and the underside of the tile. The greater the tile s profile the greater is the effect of the ventilation which herein is termed above-sheathing ventilation (ASV). However, because of the complexity of the thermally induced flow, little credit is allowed by state and federal building codes. ASHRAE (2005) provides empirical data for the effective thermal resistance of plane air spaces. A -in. (0.0191-m) plane air space inclined at 45 with the horizontal has an RUS-0.85 (RSI-0.15) . Our intent is to help further deploy cool color pigments in roofs by conducting field experiments to evaluate the new cool-colored roofing materials in the hot climate of Southern California. The collected data will be used to showcase and market the performance of new cool-roof products and also to help formulate and validate computer codes capable of calculating the heat transfer occurring within the attic and the whole building. Field measures and computer predictions showed that the demonstration home without a NIR-reflective tile coating and without above-sheathing ventilation had the greatest roof deck heat flow and subsequently the highest electrical usage. The house with both NIR paint pigments on the tile and with ASV had the least deck heat flows and therefore caused the home to consume the least amount of energy. The relative performance of the reflective coating and the ventilation individually is less obvious, but it is clear that the combination of a reflective tile with ASV is the preferred solution for the best energy saving.},
doi = {10.2172/981442},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2010},
month = {3}
}

Technical Report:

Save / Share: