Tensile and Fracture Toughness Properties of Neutron-Irradiated CuCrZr
- ORNL
- Argonne National Laboratory (ANL)
Tensile and fracture toughness properties of a precipitation-hardened CuCrZr alloy were investigated in two heat treatment conditions: solutionized, water quenched and aged (CuCrZr SAA), and hot isostatic pressed, solutionized, slow-cooled and aged (CuCrZr SCA). The second heat treatment simulated the manufacturing cycle for large components, and is directly relevant for the ITER divertor components. Specimens were neutron irradiated at {approx}80 C to two fluences, 2 x 10{sup 24} and 2 x 10{sup 25} n/m{sup 2} (E > 0.1 MeV), corresponding to displacement doses of 0.15 and 1.5 displacements per atom (dpa). Tensile and fracture toughness tests were carried out at room temperature. Significant irradiation hardening and plastic instability at yield occurred in both heat treatment conditions with a saturation dose of {approx}0.1 dpa. Neutron irradiation slightly reduced fracture toughness in CuCrZr SAA and CuCrZr SCA. The fracture toughness of CuCrZr remained high up to 1.5 dpa (J{sub Q} > 200 kJ/m{sup 2}) for both heat treatment conditions.
- Research Organization:
- Oak Ridge National Laboratory (ORNL); High Flux Isotope Reactor
- Sponsoring Organization:
- SC USDOE - Office of Science (SC)
- DOE Contract Number:
- AC05-00OR22725
- OSTI ID:
- 979117
- Journal Information:
- Journal of Nuclear Materials, Journal Name: Journal of Nuclear Materials Journal Issue: 1 Vol. 393; ISSN 0022-3115; ISSN JNUMAM
- Country of Publication:
- United States
- Language:
- English
Similar Records
Crack growth rates and fracture toughness of irradiated austenitic stainless steels in BWR environments.
Heat Treatment Effect on Fracture Toughness of F82H Irradiated in HFIR