A Matrix Computation View of the FastMap and RobustMap Dimension Reduction Algorithms
Journal Article
·
· SIAM Journal on Matrix Analysis and Applications
OSTI ID:978769
- ORNL
Given a set of pairwise object distances and a dimension $$k$$, FastMap and RobustMap algorithms compute a set of $$k$$-dimensional coordinates for the objects. These metric space embedding methods implicitly assume a higher-dimensional coordinate representation and are a sequence of translations and orthogonal projections based on a sequence of object pair selections (called pivot pairs). We develop a matrix computation viewpoint of these algorithms that operates on the coordinate representation explicitly using Householder reflections. The resulting Coordinate Mapping Algorithm (CMA) is a fast approximate alternative to truncated principal component analysis (PCA) and it brings the FastMap and RobustMap algorithms into the mainstream of numerical computation where standard BLAS building blocks are used. Motivated by the geometric nature of the embedding methods, we further show that truncated PCA can be computed with CMA by specific pivot pair selections. Describing FastMap, RobustMap, and PCA as CMA computations with different pivot pair choices unifies the methods along a pivot pair selection spectrum. We also sketch connections to the semi-discrete decomposition and the QLP decomposition.
- Research Organization:
- Oak Ridge National Laboratory (ORNL); Center for Computational Sciences
- Sponsoring Organization:
- ORNL LDRD Director's R&D; SC USDOE - Office of Science (SC)
- DOE Contract Number:
- AC05-00OR22725
- OSTI ID:
- 978769
- Journal Information:
- SIAM Journal on Matrix Analysis and Applications, Journal Name: SIAM Journal on Matrix Analysis and Applications Journal Issue: 3 Vol. 31
- Country of Publication:
- United States
- Language:
- English
Similar Records
FASTMap v. 2010.01
Randomized Projection for Rank-Revealing Matrix Factorizations and Low-Rank Approximations
Software
·
Fri Mar 10 00:00:00 EST 2017
·
OSTI ID:1399219
Randomized Projection for Rank-Revealing Matrix Factorizations and Low-Rank Approximations
Journal Article
·
Thu Aug 06 00:00:00 EDT 2020
· SIAM Review
·
OSTI ID:1650159