skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Deposition of H15NO3 vapour to white oak, red maple and loblolly pine foliage: experimental observations and a generalized model

Journal Article · · New Phytologist

Nitric acid vapour enriched with {sup 15}N (H{sup 15}NO{sub 3}) was volatilized into the cuvette of an open-flow gas exchange system containing red maple (Acer rubrum L.), white oak (Quercus alba L.), or loblolly pine (Pinus taeda L.) seedling shoots to facilitate direct measurements of total foliar deposition, and subsequent assessments of the rate of HNO{sub 3} movement across the cuticle (transcuticular uptake). Total H{sup 15}NO{sub 3} vapour deposition to foliar surfaces ranged from <5 to 27 nmol m{sup -2} s{sup -1} the variability being largely accounted for by differences in HNO{sub 3} concentrations and leaf conductance. Mean whole-leaf conductance to HNO{sub 3} ranged between 0.9 and 3.4 mm s{sup -1} for hardwoods and between 6 and 34 mm s{sup -1} for loblolly pine. Of the total H{sup 15}NO{sub 3} vapour deposited to leaves, an average of 39 to 48% was immediately 'bound' into hardwood foliage whereas only 3% was bound to loblolly pine needles. This implies that rain events might extract greater amounts of HNO{sub 3}-derived nitrate in throughfall from conifer canopies as compared to hardwood canopies. Post-exposure H{sup 15}NO{sub 3} uptake rates across the leaf cuticle increased with surface nitrate concentrations, but were 1 to 2 orders of magnitude lower (O06 to 0.24 nmol m{sup -2} s{sup -1}) than total HNO{sub 3}, deposition during exposures. A generalized leaf-level model of HNO{sub 3} deposition to foliage capable of simulating deposition pathways to sorption sites on the leaf surface, and to the metabolically active leaf interior via transcuticular or stomatal pathways is formulated and suggested for use in planning future work on HNO{sub 3} deposition.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
978726
Journal Information:
New Phytologist, Vol. 122, Issue 2; ISSN 0028-646X
Country of Publication:
United States
Language:
English