Probing the isothermal (delta)->(alpha)' martensitic transformation in Pu-Ga with in situ x-ray diffraction
The time-temperature-transformation (TTT) curve for the {delta} {yields} {alpha}{prime} isothermal martensitic transformation in a Pu-1.9 at. % Ga alloy is peculiar because it is reported to have a double-C curve. Recent work suggests that an ambient temperature conditioning treatment enables the lower-C curve. However, the mechanisms responsible for the double-C are still not fully understood. When the {delta} {yields} {alpha}{prime} transformation is induced by pressure, an intermediate {gamma}{prime} phase is observed in some alloys. It has been suggested that transformation at upper-C temperatures may proceed via this intermediate phase, while lower-C transformation progresses directly from {delta} to {alpha}{prime}. To investigate the possibility of thermally induced transformation via the intermediate {gamma}{prime} phase, in situ x-ray diffraction at the Advanced Photon Source was performed. Using transmission x-ray diffraction, the {delta} {yields} {alpha}{prime} transformation was observed in samples as thin at 30 {micro}m as a function of time and temperature. The intermediate {gamma}{prime} phase was not observed at -120 C (upper-C curve) or -155 C (lower-C curve). Results indicate that the bulk of the {alpha}{prime} phase forms relatively rapidly at -120 C and -155 C.
- Research Organization:
- Lawrence Livermore National Laboratory (LLNL), Livermore, CA
- Sponsoring Organization:
- USDOE
- DOE Contract Number:
- W-7405-ENG-48
- OSTI ID:
- 978406
- Report Number(s):
- LLNL-PROC-425667
- Country of Publication:
- United States
- Language:
- English
Similar Records
Isothermal Martensitic and Pressure-Induced Delta to Alpha-Prime Phase Transformations in a Pu-Ga Alloy
Enabling the Double-C Curve in Pu-Ga Alloy Time-Temperature-Transformation Diagrams