EFFECT OF GRAIN SIZE ON DYNAMIC SCRATCH RESPONSE IN ALUMINA
- ORNL
The machining and wear of ceramics and ceramic components are obviously influenced by abrasive damage. One parameter that can affect the abrasion process is the grain size of the ceramic material. To investigate this, single-grit pendulum scratch testing was used to investigate the dynamic scratch response in three 99.9% aluminas that each had a tight size distribution about mean grain sizes of 2, 15, or 25 m, respectively. The scratch speeds generated had an order of magnitude of ~ 1 m/s and the maximum scratch depths were several tens of micrometers. Tangential and normal scratch forces were monitored during each test and interpreted in conjunction with postmortem SEM and profilometry results. It was observed that both plastic deformation and brittle fracture participated in the scratching process and the relative activity of each was dependent on depth of penetration. At a specific depth of penetration, the material removal of alumina prevailingly relies on the generation and interaction of oblique radial and lateral cracks. Chip formation is greatly enhanced when the created cracks interact and that interaction itself depends on grain size. Larger grain size gives rise to larger lateral cracks, more severe fracture at the groove's bottom, and larger amplitude of scratch force oscillation. Lastly, the cutting pressure and the scratch hardness of alumina exhibit sensitivity to both grain size and the groove depth.
- Research Organization:
- Oak Ridge National Laboratory (ORNL); High Temperature Materials Laboratory
- Sponsoring Organization:
- EE USDOE - Office of Energy Efficiency and Renewable Energy (EE)
- DOE Contract Number:
- AC05-00OR22725
- OSTI ID:
- 978111
- Country of Publication:
- United States
- Language:
- English
Similar Records
Effect of grain size on scratch interactions and material removal in alumina
Material Removal and Specific Energy in the Dynamic Scratching of Gamma Titanium Aluminides