skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Genesis Mission: Solar Wind Conditions, and Implications for the FIP Fractionation of the Solar Wind.

Conference ·
OSTI ID:978002

The NASA Genesis mission collected solar wind on ultrapure materials between November 30, 2001 and April 1, 2004. The samples were returned to Earth September 8, 2004. Despite the hard landing that resulted from a failure of the avionics to deploy the parachute, many samples were returned in a condition that will permit analyses. Sample analyses of these samples should give a far better understanding of the solar elemental and isotopic composition (Burnett et al. 2003). Further, the photospheric composition is thought to be representative of the solar nebula, so that the Genesis mission will provide a new baseline for the average solar nebula composition with which to compare present-day compositions of planets, meteorites, and asteroids. Sample analysis is currently underway. The Genesis samples must be placed in the context of the solar and solar wind conditions under which they were collected. Solar wind is fractionated from the photosphere by the forces that accelerate the ions off of the Sun. This fractionation appears to be ordered by the first ionization potential (FIP) of the elements, with the tendency for low-FIP elements to be over-abundant in the solar wind relative to the photosphere, and high-FIP elements to be under-abundant (e.g. Geiss, 1982; von Steiger et al., 2000). In addition, the extent of elemental fractionation differs across different solarwind regimes. Therefore, Genesis collected solar wind samples sorted into three regimes: 'fast wind' or 'coronal hole' (CH), 'slow wind' or 'interstream' (IS), and 'coronal mass ejection' (CME). To carry this out, plasma ion and electron spectrometers (Barraclough et al., 2003) continuously monitored the solar wind proton density, velocity, temperature, the alpha/proton ratio, and angular distribution of suprathermal electrons, and those parameters were in turn used in a rule-based algorithm that assigned the most probable solar wind regime (Neugebauer et al., 2003). At any given time, only one of three regime-specific collectors (CH, IS, or CME) was exposed to the solar wind. Here we report on the regime-specific solar wind conditions from in-situ instruments over the course of the collection period. Further, we use composition data from the SWICS (Solar Wind Ion Composition Spectrometer) instrument on ACE (McComas et al., 1998) to examine the FIP fractionation between solar wind regimes, and make a preliminary comparison of these to the FIP analysis of Ulysses/SWICS composition data (von Steiger et al. 2000). Our elemental fractionation study includes a reevaluation of the Ulysses FIP analysis in light of newly reported photospheric abundance data (Asplund, Grevesse & Sauval, 2005). The new abundance data indicate a metallicity (Z/X) for the Sun almost a factor of two lower than that reported in the widely used compilation of Anders & Grevesse (1989). The new photospheric abundances suggest a lower degree of solar wind fractionation than previously reported by von Steiger et al. (2000) for the first Ulysses polar orbit (1991-1998).

Research Organization:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Organization:
USDOE
OSTI ID:
978002
Report Number(s):
LA-UR-05-6092; TRN: US201012%%852
Resource Relation:
Conference: Proceedings, Solar Wind II, June 2005, Whistler
Country of Publication:
United States
Language:
English