Pore collapse and hot spots in HMX
The computing power now available has led researchers to reconsider mesoscale simulations as a means to develop a detailed understanding of detonation waves in a heterogeneous explosive. Since chemical reaction rates are sensitive to temperature, hot spots are of critical importance for initiation. In a plastic-bonded explosive, shock desensitization experiments imply that hot spots generated by pore collapse dominate shock initiation. Here, for the collapse of a single pore driven by a shock, the dependence of the temperature distribution on numerical resolution and dissipative mechanism i s investigated. An inert material (with the constibtive properties of HMX) is used to better focus on the mechanics of pore collapse. ' h o important findings resulted from this study. Eust, too low a resolution can significantly enhance the hot-spot mass. Second, at even moderate piston velocities (< 1W s),s hock dissipation alone does not generate sufficient hot-spot mass. ' b oo ther dissipative mechanism investigated are plastic work and viscous heating. In the cases studied, the integrated lempera!xre distribution has a power-law tail with exponent related to a parameter with dimensions of viscosity. For a particular case, the parameter of either dissipative mechanism can be fit to obtain quantitatively the hot-spot mass needed for initiation. But the dissipative mechanisms scale differently with shock strength and pore size. Consequently, to predict initiation behavior over a range of stimuli and as the micro-stmcture properties of a PBX am varied, sufficient numerical resolution and the correct physical dissipative mechanism are essential.
- Research Organization:
- Los Alamos National Laboratory
- Sponsoring Organization:
- DOE
- OSTI ID:
- 976649
- Report Number(s):
- LA-UR-03-3113
- Country of Publication:
- United States
- Language:
- English
Similar Records
Shock desensitization of PBX-9404 and Composition B-3