Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Combined Estimation of Hydrogeologic Conceptual Model and Parameter Uncertainty

Technical Report ·
DOI:https://doi.org/10.2172/974518· OSTI ID:974518

The objective of the research described in this report is the development and application of a methodology for comprehensively assessing the hydrogeologic uncertainties involved in dose assessment, including uncertainties associated with conceptual models, parameters, and scenarios. This report describes and applies a statistical method to quantitatively estimate the combined uncertainty in model predictions arising from conceptual model and parameter uncertainties. The method relies on model averaging to combine the predictions of a set of alternative models. Implementation is driven by the available data. When there is minimal site-specific data the method can be carried out with prior parameter estimates based on generic data and subjective prior model probabilities. For sites with observations of system behavior (and optionally data characterizing model parameters), the method uses model calibration to update the prior parameter estimates and model probabilities based on the correspondence between model predictions and site observations. The set of model alternatives can contain both simplified and complex models, with the requirement that all models be based on the same set of data. The method was applied to the geostatistical modeling of air permeability at a fractured rock site. Seven alternative variogram models of log air permeability were considered to represent data from single-hole pneumatic injection tests in six boreholes at the site. Unbiased maximum likelihood estimates of variogram and drift parameters were obtained for each model. Standard information criteria provided an ambiguous ranking of the models, which would not justify selecting one of them and discarding all others as is commonly done in practice. Instead, some of the models were eliminated based on their negligibly small updated probabilities and the rest were used to project the measured log permeabilities by kriging onto a rock volume containing the six boreholes. These four projections, and associated kriging variances, were averaged using the posterior model probabilities as weights. Finally, cross-validation was conducted by eliminating from consideration all data from one borehole at a time, repeating the above process, and comparing the predictive capability of the model-averaged result with that of each individual model. Using two quantitative measures of comparison, the model-averaged result was superior to any individual geostatistical model of log permeability considered.

Research Organization:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
974518
Report Number(s):
PNNL-14534; NUREG/CR-6843; 401001060
Country of Publication:
United States
Language:
English

Similar Records

Maximum Likelihood Bayesian Averaging of Spatial Variability Models in Unsaturated Fractured Tuff
Journal Article · Tue May 25 00:00:00 EDT 2004 · Water Resources Research · OSTI ID:15008060

Imprecise (fuzzy) information in geostatistics
Conference · Sun May 01 00:00:00 EDT 1988 · J. Int. Assoc. Math. Geol.; (United States) · OSTI ID:6294926

Reducing uncertainty in geostatistical description with well testing pressure data
Conference · Fri Aug 01 00:00:00 EDT 1997 · OSTI ID:508525