skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Implementing and Evaluating Multithreaded Triad Census Algorithms on the Cray XMT

Conference ·

Commonly represented as directed graphs, social networks depict relationships and behaviors among social entities such as people, groups, and organizations. Social network analysis denotes a class of mathematical and statistical methods designed to study and measure social networks. Beyond sociolo-gy, social network analysis methods are being applied to other types of data in other domains such as bioinformatics, computer networks, national security, and economics. For particular problems, the size of a social network can grow to millions of nodes and tens of millions of edges or more. In such cases, researchers could benefit from the application of social network analysis algorithms on high-performance architectures and systems. The Cray XMT is a third generation multithreaded system based on the Cray XT-3/4 platform. Like most other multithreaded architectures, the Cray XMT is designed to tolerate memory access latencies by switching context between threads. The processors maintain multiple threads of execution and util-ize hardware-based context switching to overlap the memory latency incurred by any thread with the computations from other threads. Due to its memory latency tolerance, the Cray XMT has the poten-tial of significantly improving the execution speed of irregular data-intensive applications such as those found in social network analysis. In this paper, we describe our experiences in developing and optimizing three implementations of a social network analysis method known as triadic analysis to execute on the Cray XMT. The three im-plementations possess different execution complexities, qualities, and characteristics. We evaluate how the various attributes of the codes affect their performance on the Cray XMT. We also explore the effects of different compiler options and execution strategies on the different triadic analysis im-plementations and identify general XMT programming issues and lessons learned.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
973732
Report Number(s):
PNNL-SA-64273; 400470000; TRN: US201006%%1090
Resource Relation:
Conference: IEEE International Symposium on Parallel & Distributed Processing (IPDPS 2009), May 25-29, Rome, Italy
Country of Publication:
United States
Language:
English