skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Effect of Neutron Irradiation Damage on the Properties of Grade NBG-10 Graphite

Journal Article · · Journal of Nuclear Materials

Nuclear Block Graphite-10 (NBG-10) is a medium-grain, near-isotropic graphite manufactured by SGL Carbon Company at their plant in Chedde, France. NBG-10 graphite was developed as a candidate core structural material for the Pebble Bed Modular Reactor (PBMR) currently being designed in South Africa, and for prismatic reactor concepts being developed in the USA and Europe. NBG-10 is one of several graphites included in the US-DOE Very High Temperature Reactor (VHTR) program. Thirty-six NBG-10 graphite flexure bars have been successfully irradiated in a series of eighteen HFIR PTT capsules at ORNL. The capsule irradiation temperatures were 294 25, 360 25 and 691 25 C. The peak doses attained were 4.93, 6.67, and 6.69 x 1025 n/m2 [E>0.1 MeV] at ~294, ~360, and ~691 C, respectively. The high temperature irradiation volume and dimensional change behavior, and flexure strength and elastic modulus changes of NBG-10 were similar to other extruded, near-isotropic grades, such as H-451, which has been irradiated previously at ORNL. The low temperature (~294 C) irradiation volume and dimensional change behavior was also as expected for extruded graphites, i.e., exhibiting low dose swelling prior to shrinkage. This behavior was attributed to the relaxation of internal stress arising from the graphite manufacturing process and specimen machining. While the data reported here do not represent a complete database for NBG-10 graphite, they give a measure of confidence that the current generation of nuclear graphites will behave in a familiar and well understood manner.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE Office of Nuclear Energy (NE)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
973534
Journal Information:
Journal of Nuclear Materials, Vol. 371, Issue 1-3
Country of Publication:
United States
Language:
English