Introducing control flow into vectorized code.
Single instruction multiple data (SIMD) functional units are ubiquitous in modern microprocessors. Effective use of these SIMD functional units is essential in achieving the highest possible performance. Automatic generation of SIMD instructions in the presence of control flow is challenging, however, not only because SIMD code is hard to generate in the presence of arbitrarily complex control flow, but also because the SIMD code executing the instructions in all control paths may slow compared to the scalar original, which may bypass a large portion of the code. One promising technique introduced recently involves inserting branches-on-superword-condition-codes (BOSCCs) to bypass vector instructions. In this paper, we describe two techniques that improve on the previous approach. First, BOSCCs are generated in a nested fashion so that even BOSCCs themselves can be bypassed by other BOSCCs. Second, we generate all vec any instructions to bypass even some predicate-defining instructions. We implemented these techniques in a vectorizing compiler. On 14 kernels, the compiler achieves distinct speedups, including 1.99X over the previous technique that generates single-level BOSCCs and vec any ne only.
- Research Organization:
- Argonne National Laboratory (ANL)
- Sponsoring Organization:
- SC
- DOE Contract Number:
- AC02-06CH11357
- OSTI ID:
- 971147
- Report Number(s):
- ANL/MCS/CP-59118
- Country of Publication:
- United States
- Language:
- ENGLISH
Similar Records
SIMD programming by expansion.
Implementation of McMurchie–Davidson Algorithm for Gaussian AO Integrals Suited for SIMD Processors