skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Real-time Data Center Energy Efficiency At Pacific Northwest National Laboratory

Journal Article · · ASHRAE Transactions, 115(Part I):242-253
OSTI ID:969613

The escalating consumption of power in data centers worldwide has brought the issue of data center energy efficiency to the forefront. Data center owners and operators now regard detailed knowledge of the energy efficiencies of their data centers as a competitive advantage. With funding from the Department of Energy (NNSA), PNNL has undertaken an in-depth analysis of the real-time energy efficiency for its Energy Smart Data Center Test Bed(ESDC-TB), which is housed in the mixed-use EMSL. The analysis is centered around the real-time display of The Green Grid’s proposed DCiE metric. To calculate this metric, PNNL relies on a variety of sources of data. At the ESDC-TB level, the data center is instrumented to the 100% level (all power consumption, and water temperatures and flow rates are measured). Most of this data is monitored in real-time, but the exception to this is with the CRAHs, which rely on a one-time power consumption measurement for the blowers (these are single speed blowers, so a one-time measurement suffices.). Outside of the data center (EMSL facility level), PNNL relies on the following: • Real-time data from the entire chiller plant (five chillers), six chilled water pumps, and one of four cooling towers (blowers only). • One-time power measurements for a single fixed speed pump that is representative of each grouping of pumps (the other pumps are assumed to possess the same power consumption levels). • One-time power measurements for a single two-speed cooling tower blower. This same blower model is deployed in three of the four cooling towers, so is assumed to be representative for all these blowers. • One-time power measurements for a single fixed speed cooling tower pump. This same pump model is deployed in all four cooling towers, so is assumed to be representative for all these pumps. A software tool named FRED was developed by PNNL to acquire, reduce, display, and archive all the data acquired from the ESDC-TB and EMSL. FRED provides the ability to display various levels of real-time data starting at the ESDC-TB and EMSL levels, then to lower levels as desired. For example, for the ESDC-TB, graphical screens are provided at the data center level, the rack level, the server level, and even the component level. In the near-term, FRED will also display the real-time DCiE. One of the major challenges to doing this in a mixed-use facility has been to quantify the power consumption of each major mechanical or electrical subsystem that is attributable to the IT equipment housed within the ESDC-TB (i.e., NW-ICE). PNNL has tackled this issue for its five chiller plant, and the analysis is presented in the paper. The analysis for all the remaining mechanical and electrical subsystems is now underway and will be presented in future publications.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
969613
Report Number(s):
PNNL-SA-60170; ASHTAG; DP1501000; TRN: US201001%%725
Journal Information:
ASHRAE Transactions, 115(Part I):242-253, Vol. 115, Issue Part I; ISSN 0001-2505
Country of Publication:
United States
Language:
English