Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

EXPERIMENTAL RESULTS OF THE NEPHELINE PHASE III STUDY

Technical Report ·
DOI:https://doi.org/10.2172/969038· OSTI ID:969038
This study is the third phase in a series of experiments designed to reduce conservatism in the model that predicts the formation of nepheline, a crystalline phase that can reduce the durability of high level waste glass. A Phase I study developed a series of glass compositions that were very durable while their nepheline discriminator values were well below the current nepheline discriminator limit of 0.62, where nepheline is predicted to crystallize upon slow cooling. A Phase II study selected glass compositions to identify any linear effects of composition on nepheline crystallization and that were restricted to regions that fell within the validation ranges of the Defense Waste Processing Facility (DWPF) Product Composition Control System (PCCS) models. However, it was not possible to identify any linear effects of composition on chemical durability performance for this set of study glasses. The results of the Phase II study alone were not sufficient to recommend modification of the current nepheline discriminator. It was recommended that the next series of experiments continue to focus not only on compositional regions where the PCCS models are considered applicable (i.e., the model validation ranges), but also be restricted to compositional regions where the only constraint limiting processing is the current nepheline discriminator. Two methods were used in selecting glasses for this Phase III nepheline study. The first was based on the relationship of the current nepheline discriminator model to the other DWPF PCCS models, and the second was based on theory of crystallization in mineral and glass melts. A series of 29 test glass compositions was selected for this study using a combination of the two approaches. The glasses were fabricated and characterized in the laboratory. After reviewing the data, the study glasses generally met the target compositions with little issue. Product Consistency Test results correlated well with the crystallization analyses in that those glasses that were found to contain nepheline after the centerline canister cooled (ccc) heat treatment generally had normalized release values that were greater than their quenched counterparts on a statistically significant basis. The current nepheline discriminator as implemented at the DWPF was shown to continue to work well in predicting nepheline prone glass compositions. A main objective of this study was to identify any compositional regions where conservatism in the current nepheline discriminator was preventing access to those regions that would otherwise be acceptable for DWPF processing by the PCCS models. Four glasses (based on the measured compositions) were identified through this study that met those criteria. However, a review of the individual compositions of these glasses revealed no clear trends that might indicate a driver for suppression of nepheline. Another objective of this study was to evaluate an alternative nepheline discriminator model developed using theory of crystallization in mineral and glass melts. Unfortunately this new model, in its current state, was unsuccessful in predicting nepheline crystallization in the glass compositions selected for this study. It is recommended that the data collected in this study be incorporated into the new model for further refinement.
Research Organization:
SRS
Sponsoring Organization:
DOE
DOE Contract Number:
AC09-08SR22470
OSTI ID:
969038
Report Number(s):
SRNL-STI-2009-00608
Country of Publication:
United States
Language:
English