skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Primary and Secondary Organic Carbon Downwind of Mexico City

Journal Article · · Atmospheric Chemistry and Physics, 9(18):6793-6814

In order to study particulate matter transport and transformation in the Megacity environment, fine particulate carbons were measured simultaneously at two supersites, suburban T1 and rural T2, downwind of Mexico City during the MILAGRO field campaign in March 2006. Organic carbon (OC), element carbon (EC), and total carbon (TC=OC+EC) were determined near real-time by the Sunset semi-continuous field analyzer at both sites. The semi-empirical EC tracer method was used to derive primary organic carbon (POC) and secondary organic carbon (SOC). Diurnal variations of primary and secondary carbons were observed at T1 and T2, which resulted from boundary layer inversion and impacted by local traffic patterns. The majority of organic carbons at T1 and T2 were secondary. The SOC% (SOC%=SOC/TC*100%) at T1 ranged from 1.2 - 100% with an average of 80.7 ± 14.4%. The SOC% at T2 ranged from 12.8 - 100% with an average of 80.1 ± 14.0%. The average EC to PM2.5 percentage (ECPM%=EC/PM2.5*100%)) and OCPM% were 6.0 % and 20.0% over the whole sampling time. The POC to PM percentage (POCPM%) and SOCPM% were 3.7% and 16.3%, respectively. The maximum ECPM% was 21.2%, and the maximum OCPM% was 57.2%. The maximum POCPM% was 12.9%, and the maximum SOC% was 49.7%. The SOC and POC during T1 to T2 transfer favourable meteorological conditions showed similar characteristics, which indicated that transport between the two supersites took place. Strong correlations between EC and carbon monoxide (CO) and odd nitrogens (NO and NOx) were observed at T1. This indicated that EC had proximate sources such as local traffic emissions. The EC/CO ratio derived by linear regression analysis when parameters are in μgC/m3 and μg/m3, respectively, was 0.0045. A strong correlation was also seen between OC and SOC vs. the sum of oxidants such as O3 and NO2 or O3, NO2 and SO2, suggesting the secondary nature of carbons observed at T1.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
967210
Report Number(s):
PNNL-SA-62680; KP1701000; TRN: US200923%%186
Journal Information:
Atmospheric Chemistry and Physics, 9(18):6793-6814, Vol. 9, Issue 18
Country of Publication:
United States
Language:
English