Strong Links Between Teleconnections and Ecosystem Exchange Found at a Pacific Northwest Old-Growth Forest from Flux Tower and MODIS EVI Data
Journal Article
·
· Global Change Biology
Variability in three Pacific teleconnection patterns are examined to see if net carbon exchange at a low-elevation, old-growth forest is affected by climatic changes associated with these periodicities. Examined are the Pacific Decadal Oscillation (PDO), Pacific/North American Oscillation (PNA) and El Nino-Southern Oscillation (ENSO). We use nine years of eddy covariance CO{sub 2}, H{sub 2}O and energy fluxes measured at the Wind River AmeriFlux site, Washington, USA and eight years of tower-pixel remote sensing data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to address this question. We compute a new Composite Climate Index (CCI) based on the three Pacific Oscillations to divide the measurement period into positive- (2003 and 2005), negative- (1999 and 2000) and neutral-phase climate years (2001, 2002, 2004, 2006 and 2007). The forest transitioned from an annual net carbon sink (NEP = + 217 g C m{sup -2} year{sup -1}, 1999) to a source (NEP = - 100 g C m{sup -2} year{sup -1}, 2003) during two dominant teleconnection patterns. Net ecosystem productivity (NEP), water use efficiency (WUE) and light use efficiency (LUE) were significantly different (P < 0.01) during positive (NEP = -0.27 g C m{sup -2} day{sup -1}, WUE = 4.1 mg C/g H{sub 2}O, LUE = 0.94 g C MJ{sup -1}) and negative (NEP = +0.37 g C m{sup -2} day{sup -1}, WUE = 3.4 mg C/g H{sub 2}O, LUE = 0.83 g C MJ{sup -1}) climate phases. The CCI was linked to variability in the MODIS Enhanced Vegetation Index (EVI) but not to MODIS Fraction of absorbed Photosynthetically Active Radiation (FPAR). EVI was highest during negative climate phases (1999 and 2000) and was positively correlated with NEP and showed potential for using MODIS to estimate teleconnection-driven anomalies in ecosystem CO{sub 2} exchange in old-growth forests. This work suggests that any increase in the strength or frequency of ENSO coinciding with in-phase, low frequency Pacific oscillations (PDO and PNA) will likely increase CO{sub 2} uptake variability in Pacific Northwest conifer forests.
- Research Organization:
- Lawrence Livermore National Laboratory (LLNL), Livermore, CA
- Sponsoring Organization:
- USDOE
- DOE Contract Number:
- W-7405-ENG-48
- OSTI ID:
- 966901
- Report Number(s):
- LLNL-JRNL-412685
- Journal Information:
- Global Change Biology, Journal Name: Global Change Biology Journal Issue: 9 Vol. 15; ISSN GCBIFE; ISSN 1354-1013
- Country of Publication:
- United States
- Language:
- English
Similar Records
Climate indices strongly influence old-growth forest carbon exchange
Modulation of ENSO teleconnections over North America by the Pacific decadal oscillation
Multidecadal Fluctuations in the Observed ENSO‐Tropical Cyclone Teleconnection
Journal Article
·
Wed Apr 13 00:00:00 EDT 2016
· Environmental Research Letters
·
OSTI ID:1253689
Modulation of ENSO teleconnections over North America by the Pacific decadal oscillation
Journal Article
·
Tue Oct 18 00:00:00 EDT 2022
· Environmental Research Letters
·
OSTI ID:2424535
Multidecadal Fluctuations in the Observed ENSO‐Tropical Cyclone Teleconnection
Journal Article
·
Mon Nov 10 19:00:00 EST 2025
· Geophysical Research Letters
·
OSTI ID:3010302