skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modeling the Interaction of Helium with Dislocations and Grain Boundaries in Alpha-Iron

Book ·
OSTI ID:966318

Molecular statics, molecular dynamics and the dimer method of potential surface mapping are being used to study the fate of helium in the vicinity of dislocations and grain boundaries in alpha-iron. Even at very low temperatures interstitial helium atoms can migrate to dislocations and grain boundaries, where they are strongly bound. The binding energies of helium to these microstructural features, relative to the perfect crystal, and the migration energies of helium diffusing within them have a strong correlation to the excess atomic volume that exists in these extended defects. Helium atom migration energies within the dislocations and grain boundaries studied are in the range of 0.4 – 0.5 eV. Helium “kick out” mechanisms have been identified within dislocations and grain boundaries by which interstitial helium atoms replace an Fe lattice atom, creating a stable He-vacancy complex that may be a nucleation site for a He bubble.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
966318
Report Number(s):
PNNL-SA-51689; AT6020100; TRN: US200921%%265
Resource Relation:
Related Information: Fusion Materials Semiannual Progress Report for the Period Ending June 30, 2006, DOE/ER-0313/40., 147-153
Country of Publication:
United States
Language:
English