Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

A statistical framework for protein quantitation in bottom-up MS-based proteomics

Journal Article · · Bioinformatics, 25(16):2028-2034
ABSTRACT Motivation: Quantitative mass spectrometry-based proteomics requires protein-level estimates and confidence measures. Challenges include the presence of low-quality or incorrectly identified peptides and widespread, informative, missing data. Furthermore, models are required for rolling peptide-level information up to the protein level. Results: We present a statistical model for protein abundance in terms of peptide peak intensities, applicable to both label-based and label-free quantitation experiments. The model allows for both random and censoring missingness mechanisms and provides naturally for protein-level estimates and confidence measures. The model is also used to derive automated filtering and imputation routines. Three LC-MS datasets are used to illustrate the methods. Availability: The software has been made available in the open-source proteomics platform DAnTE (Polpitiya et al. (2008)) (http://omics.pnl.gov/software/). Contact: adabney@stat.tamu.edu
Research Organization:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
965993
Report Number(s):
PNNL-SA-66740; KP1601010
Journal Information:
Bioinformatics, 25(16):2028-2034, Journal Name: Bioinformatics, 25(16):2028-2034 Journal Issue: 16 Vol. 25
Country of Publication:
United States
Language:
English

Similar Records

A Statistical Framework for Protein Quantitation in Bottom-Up MS-Based Proteomics
Journal Article · Sat Aug 15 00:00:00 EDT 2009 · Bioinformatics, 25(16):2028-2034 · OSTI ID:989040

Large-Scale and Deep Quantitative Proteome Profiling Using Isobaric Labeling Coupled with Two-Dimensional LC-MS/MS
Book · Thu Feb 11 23:00:00 EST 2016 · OSTI ID:1240224

The Use of a Quantitative Cysteinyl-peptide Enrichment Technology for High-Throughput Quantitative Proteomics
Book · Mon Jan 01 23:00:00 EST 2007 · OSTI ID:1006333