skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: GROUNDWATER REMEDIATION SOLUTIONS AT HANFORD

Abstract

In 2006, Congress provided funding to the U. S. Department of Energy (DOE) to study new technologies that could be used to treat contamination from the Hanford Site that might impact the Columbia River. The contaminants of concern are primarily metals and radionuclides, which are byproducts of Hanford’s cold war mission to produce plutonium for atomic weapons. The DOE asked Pacific Northwest National Laboratory (PNNL) to consider this problem and develop approaches to address the contamination that threatens the river. DOE identified three high priority sites that had groundwater contamination migrating towards the Columbia river for remediation. The contaminants included strontium-90, uranium and chromium. Remediation techniques for metals and radionuclides focus primarily on altering the oxidation state of the contaminant chemically or biologically, isolating the contaminants from the environment through adsorption or encapsulation or concentrating the contaminants for removal. A natural systems approach was taken that uses a mass balance concept to frame the problem and determine the most appropriate remedial approach. This approach provides for a scientifically based remedial decision. The technologies selected to address these contaminants included an apatite adsorption barrier coupled with a phytoremediation to address the strontium-90 contamination, injection of polyphosphate into the subsurface to sequestermore » uranium, and a bioremediation approach to reduce chromium contamination in the groundwater. The ability to provide scientifically based approaches is in large part due to work developed under previous DOE Office of Science and Office of Environmental Management projects. For example, the polyphosphate and the bioremediation techniques, were developed by PNNL under the EMSP and NABIR programs. Contaminated groundwater under the Hanford Site poses a potential risk to humans and the Columbia River. These new technologies holds great promise for effectively remediating the residual waste that threatens the environment.« less

Authors:
; ;
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
960322
Report Number(s):
PNNL-SA-53502
830403000; TRN: US0904373
DOE Contract Number:
AC05-76RL01830
Resource Type:
Conference
Resource Relation:
Conference: Waste management symposium 2007 : Global Accomplishments in Environmental and Radioactive Waste Management - Education and Opportunity for the next Generation of Waste Management Professionals: February 25-March 1, 2007, Tucson, Arizona
Country of Publication:
United States
Language:
English
Subject:
12 MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; 45 MILITARY TECHNOLOGY, WEAPONRY, AND NATIONAL DEFENSE; ADSORPTION; APATITES; BIOREMEDIATION; CHROMIUM; COLUMBIA RIVER; CONTAMINATION; ENCAPSULATION; MASS BALANCE; NUCLEAR WEAPONS; PLUTONIUM; RADIOACTIVE WASTE MANAGEMENT; RADIOISOTOPES; REMOVAL; STRONTIUM 90; URANIUM; WASTE MANAGEMENT; WASTES; groundwater remediation

Citation Formats

Gilmore, Tyler J., Truex, Michael J., and Williams, Mark D. GROUNDWATER REMEDIATION SOLUTIONS AT HANFORD. United States: N. p., 2007. Web.
Gilmore, Tyler J., Truex, Michael J., & Williams, Mark D. GROUNDWATER REMEDIATION SOLUTIONS AT HANFORD. United States.
Gilmore, Tyler J., Truex, Michael J., and Williams, Mark D. Mon . "GROUNDWATER REMEDIATION SOLUTIONS AT HANFORD". United States. doi:.
@article{osti_960322,
title = {GROUNDWATER REMEDIATION SOLUTIONS AT HANFORD},
author = {Gilmore, Tyler J. and Truex, Michael J. and Williams, Mark D.},
abstractNote = {In 2006, Congress provided funding to the U. S. Department of Energy (DOE) to study new technologies that could be used to treat contamination from the Hanford Site that might impact the Columbia River. The contaminants of concern are primarily metals and radionuclides, which are byproducts of Hanford’s cold war mission to produce plutonium for atomic weapons. The DOE asked Pacific Northwest National Laboratory (PNNL) to consider this problem and develop approaches to address the contamination that threatens the river. DOE identified three high priority sites that had groundwater contamination migrating towards the Columbia river for remediation. The contaminants included strontium-90, uranium and chromium. Remediation techniques for metals and radionuclides focus primarily on altering the oxidation state of the contaminant chemically or biologically, isolating the contaminants from the environment through adsorption or encapsulation or concentrating the contaminants for removal. A natural systems approach was taken that uses a mass balance concept to frame the problem and determine the most appropriate remedial approach. This approach provides for a scientifically based remedial decision. The technologies selected to address these contaminants included an apatite adsorption barrier coupled with a phytoremediation to address the strontium-90 contamination, injection of polyphosphate into the subsurface to sequester uranium, and a bioremediation approach to reduce chromium contamination in the groundwater. The ability to provide scientifically based approaches is in large part due to work developed under previous DOE Office of Science and Office of Environmental Management projects. For example, the polyphosphate and the bioremediation techniques, were developed by PNNL under the EMSP and NABIR programs. Contaminated groundwater under the Hanford Site poses a potential risk to humans and the Columbia River. These new technologies holds great promise for effectively remediating the residual waste that threatens the environment.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Feb 26 00:00:00 EST 2007},
month = {Mon Feb 26 00:00:00 EST 2007}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: