Thermoelasticity of olivine to 8 GPa 1073K
In situ synchrotron X-ray diffraction measurements have been carried out on San Carlos olivine (Mg0.9Fe0.1)2SiO4 up to 8 GPa and 1073 K. Data analysis using the high-temperature Birch-Murnaghan (HTBM) equation of state (EoS) yields the temperature derivative of the bulk modulus ({partial_derivative}KT/{partial_derivative}T)P = -0.019 {+-} 0.002 GPa K-1. The thermal pressure (TH) approach gives aKT = 4.08 {+-} 0.10 x 10-3 GPa K-1, from which ({partial_derivative}KT/{partial_derivative}T)P = -0.019 {+-} 0.001 GPa K-1 is derived. Fitting the present data to the Mie-Grueneisen-Debye (MGD) formalism, the Grueneisen parameter at ambient conditions 0 is constrained to be 1.14 {+-} 0.02 with fixed volume dependence q = 1. Combining the present data with previous results on iron-bearing olivine and fitting to MGD EoS, we obtain 0 = 1.11 {+-} 0.01 and q = 0.54 {+-} 0.36. In this study the thermoelastic parameters obtained from various approaches are in good agreement with one another and previous results.
- Research Organization:
- Brookhaven National Laboratory (BNL) National Synchrotron Light Source
- Sponsoring Organization:
- Doe - Office Of Science
- DOE Contract Number:
- AC02-98CH10886
- OSTI ID:
- 959950
- Report Number(s):
- BNL--82936-2009-JA
- Journal Information:
- Physics of the Earth and Planetary Interiors, Journal Name: Physics of the Earth and Planetary Interiors Vol. 157; ISSN 0031-9201; ISSN PEPIAM
- Country of Publication:
- United States
- Language:
- English
Similar Records
Thermoelastic equation of state of molybdenum
Elasticity of Polycrystalline Pyrope (Mg3Al2Si3O12) to 9 GPa and 1000°C