skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Probing Variable Amine/Amide Ligation in NiIIN2S2 Complexes Using Sulfur K-Edge and Nickel L-Edge X-ray Absorption Spectroscopies: Implications for the Active Site of Nickel Superoxide Dismutase

Journal Article · · Inorganic Chemistry
DOI:https://doi.org/10.1021/ic7019878· OSTI ID:959862

Nickel superoxide dismutase (NiSOD) is a recently discovered metalloenzyme that catalyzes the disproportionation of O2* into O2 and H2O2. In its reduced state, the mononuclear NiII ion is ligated by two cis-cysteinate sulfurs, an amine nitrogen (from the protein N-terminus), and an amide nitrogen (from the peptide backbone). Unlike many small molecule and metallopeptide-based NiN2S2 complexes, S-based oxygenation is not observed in NiSOD. Herein we explore the spectroscopic properties of a series of three NiIIN2S2 complexes (bisamine-ligated (bmmp-dmed)NiII, amine/amide-ligated (NiII(BEAAM)), and bisamide-ligated (NiII(emi))2) with varying amine/amide ligation to determine the origin of the dioxygen stability of NiSOD. Ni L-edge X-ray absorption spectroscopy (XAS) demonstrates that there is a progression in ligand-field strength with (bmmp-dmed)NiII having the weakest ligand field and (NiII(emi)2) having the strongest ligand field. Furthermore, these Ni L-edge XAS studies also show that all three complexes are highly covalent with (NiII(BEEAM)) having the highest degree of metal-ligand covalency of the three compounds studied. S K-edge XAS also shows a high degree of NiS covalency in all three complexes. The electronic structures of the three complexes were probed using both hybrid-DFT and multiconfigurational SORCI calculations. These calculations demonstrate that the nucleophilic Ni(3d)/S()* HOMO of these NiN2S2 complexes progressively decreases in energy as the amide-nitrogens are replaced with amine nitrogens. This decrease in energy of the HOMO deactivates the Ni-center toward O2 reactivity. Thus, the NiS bond is protected from S-based oxygenation explaining the enhanced stability of the NiSOD active-site toward oxygenation by dioxygen.

Research Organization:
Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source
Sponsoring Organization:
Doe - Office Of Science
DOE Contract Number:
DE-AC02-98CH10886
OSTI ID:
959862
Report Number(s):
BNL-82848-2009-JA; INOCAJ; TRN: US201016%%1006
Journal Information:
Inorganic Chemistry, Vol. 47, Issue 7; ISSN 0020-1669
Country of Publication:
United States
Language:
English