Complex biological and bio-inspired systems
- Los Alamos National Laboratory
The understanding and characterization ofthe fundamental processes of the function of biological systems underpins many of the important challenges facing American society, from the pathology of infectious disease and the efficacy ofvaccines, to the development of materials that mimic biological functionality and deliver exceptional and novel structural and dynamic properties. These problems are fundamentally complex, involving many interacting components and poorly understood bio-chemical kinetics. We use the basic science of statistical physics, kinetic theory, cellular bio-chemistry, soft-matter physics, and information science to develop cell level models and explore the use ofbiomimetic materials. This project seeks to determine how cell level processes, such as response to mechanical stresses, chemical constituents and related gradients, and other cell signaling mechanisms, integrate and combine to create a functioning organism. The research focuses on the basic physical processes that take place at different levels ofthe biological organism: the basic role of molecular and chemical interactions are investigated, the dynamics of the DNA-molecule and its phylogenetic role are examined and the regulatory networks of complex biochemical processes are modeled. These efforts may lead to early warning algorithms ofpathogen outbreaks, new bio-sensors to detect hazards from pathomic viruses to chemical contaminants. Other potential applications include the development of efficient bio-fuel alternative-energy processes and the exploration ofnovel materials for energy usages. Finally, we use the notion of 'coarse-graining,' which is a method for averaging over less important degrees of freedom to develop computational models to predict cell function and systems-level response to disease, chemical stress, or biological pathomic agents. This project supports Energy Security, Threat Reduction, and the missions of the DOE Office of Science through its efforts to accurately model biological systems at the molecular and cellular level. The project's impact encompasses applications to biofuels, to novel sensors and to materials with broad use for energy or threat reduction. The broad, interdisciplinary approach of CNLS offers the unparalleled strength of combining science backgrounds and expertise -a unique and important asset in attacking the complex science of biological organisms. This approach also allows crossfertilization, with concepts and techniques transferring across field boundaries.
- Research Organization:
- Los Alamos National Laboratory (LANL)
- Sponsoring Organization:
- DOE
- DOE Contract Number:
- AC52-06NA25396
- OSTI ID:
- 956421
- Report Number(s):
- LA-UR-09-00907; LA-UR-09-907
- Country of Publication:
- United States
- Language:
- English
Similar Records
Statistical physics of networks, information and complex systems
SINGLE-CELL LEVEL INVESTIGATION OF CYTOSKELETAL/CELLULAR RESPONSE TO EXTERNAL STIMULI