skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Recovery of propylene glycol from dilute aqueous solutions by reversible chemical complexation with organoboronates

Technical Report ·
DOI:https://doi.org/10.2172/95322· OSTI ID:95322

Extractants consisting of an ion-pair of Aliquat 336 with phenylboronate or 3-nitrophenylboronate were prepared in various diluents (2-ethylhexanol, toluene, o-xylene or diisobutylketone). In batch experiments propyleneglycol (1,2-PD) was effectively extracted even at low concentrations. Heterogeneous complexation constants {beta}{sub 11} calculated at 25 C were 45-120 (mol/1){sup {minus}1} in 2-ethylhexanol, 34.8 (mol/l){sup {minus}1} in toluene, 37.6 (mol/l){sup {minus}1} in o-xylene and 14.4 (mol/l){sup {minus}1} in diisobutylketone. In 2-ethythexanol, there was no significant effect of extractant concentration on the complexation constant. Equilibrium water concentration in the extractants was 8-12 wt %, decreasing with 1,2-PD uptake. Nearly all extractant/diluent systems exhibited overloading (more than stoichiometric uptake of 1,2-PD). Evidence for aggregation of the ion-pair extractant in organic phase was found from water solubilization studies (molar solubilization ratios up to 10) and {sup 1}H NMR spectroscopy studies. Solubilization of 1,2-PD within hydrophilic aggregate interiors may explain the observed overloading. The complexation constant decreased with increasing temperature, but not enough to make back extraction after a temperature change attractive. Back extraction may be achieved after acidification with carbon dioxide to convert the organoboronate anion to the corresponding organoboronic acid. Up to 80% of the extracted 1,2-PD was backextracted in a batch extraction using C0{sub 2}. The extractant could then be regenerated by stripping carbon dioxide from solution at temperatures exceeding 110 C. However, at these temperatures the extractant appears to undergo a transformation in which color changes and extraction capacity is reduced to about 60% of original value.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
AC03-76SF00098
OSTI ID:
95322
Report Number(s):
LBL-36913; ON: DE95016521
Resource Relation:
Other Information: PBD: May 1995
Country of Publication:
United States
Language:
English