skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Performance analysis of bonded composite doublers on aircraft structures

Abstract

Researchers contend that composite repairs (or structural reinforcement doublers) offer numerous advantages over metallic patches including corrosion resistance, light weight, high strength, elimination of rivets, and time savings in installation. Their use in commercial aviation has been stifled by uncertainties surrounding their application, subsequent inspection and long-term endurance. The process of repairing or reinforcing airplane structures is time consuming and the design is dependent upon an accompanying stress and fatigue analysis. A repair that is too stiff may result in a loss of fatigue life, continued growth of the crack being repaired, and the initiation of a new flaw in the undesirable high stress field around the patch. Uncertainties in load spectrums used to design repairs exacerbates these problems as does the use of rivets to apply conventional doublers. Many of these repair or structural reinforcement difficulties can be addressed through the use of composite doublers. Primary among unknown entities are the effects of non-optimum installations and the certification of adequate inspection procedures. This paper presents on overview of a program intended to introduce composite doubler technology to the US commercial aircraft fleet. In this project, a specific composite application has been chosen on an L-1011 aircraft in order tomore » focus the tasks on application and operation issues. Through the use of laboratory test structures and flight demonstrations on an in-service L-1011 airplane, this study is investigating composite doubler design, fabrication, installation, structural integrity, and non-destructive evaluation. In addition to providing an overview of the L-1011 project, this paper focuses on a series of fatigue and strength tests which have been conducted in order to study the damage tolerance of composite doublers. Test results to-date are presented.« less

Authors:
Publication Date:
Research Org.:
Sandia National Labs., Albuquerque, NM (United States)
Sponsoring Org.:
USDOE, Washington, DC (United States); Federal Aviation Administration, Washington, DC (United States)
OSTI Identifier:
95298
Report Number(s):
SAND-95-1886C; CONF-950833-4
ON: DE95016737; CNN: Contract DTFA-03-91-A-0018
DOE Contract Number:
AC04-94AL85000
Resource Type:
Conference
Resource Relation:
Conference: 10. international conference on composite materials, Vancouver (Canada), 14-18 Aug 1995; Other Information: PBD: [1995]
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING NOT INCLUDED IN OTHER CATEGORIES; 36 MATERIALS SCIENCE; COMPOSITE MATERIALS; MATERIALS TESTING; AIRCRAFT COMPONENTS; REPAIR; AIRCRAFT; CRACKS; REINFORCED MATERIALS; BORON; EPOXIDES; STRESS ANALYSIS; CRACK PROPAGATION; ALUMINIUM

Citation Formats

Roach, D. Performance analysis of bonded composite doublers on aircraft structures. United States: N. p., 1995. Web.
Roach, D. Performance analysis of bonded composite doublers on aircraft structures. United States.
Roach, D. 1995. "Performance analysis of bonded composite doublers on aircraft structures". United States. doi:. https://www.osti.gov/servlets/purl/95298.
@article{osti_95298,
title = {Performance analysis of bonded composite doublers on aircraft structures},
author = {Roach, D.},
abstractNote = {Researchers contend that composite repairs (or structural reinforcement doublers) offer numerous advantages over metallic patches including corrosion resistance, light weight, high strength, elimination of rivets, and time savings in installation. Their use in commercial aviation has been stifled by uncertainties surrounding their application, subsequent inspection and long-term endurance. The process of repairing or reinforcing airplane structures is time consuming and the design is dependent upon an accompanying stress and fatigue analysis. A repair that is too stiff may result in a loss of fatigue life, continued growth of the crack being repaired, and the initiation of a new flaw in the undesirable high stress field around the patch. Uncertainties in load spectrums used to design repairs exacerbates these problems as does the use of rivets to apply conventional doublers. Many of these repair or structural reinforcement difficulties can be addressed through the use of composite doublers. Primary among unknown entities are the effects of non-optimum installations and the certification of adequate inspection procedures. This paper presents on overview of a program intended to introduce composite doubler technology to the US commercial aircraft fleet. In this project, a specific composite application has been chosen on an L-1011 aircraft in order to focus the tasks on application and operation issues. Through the use of laboratory test structures and flight demonstrations on an in-service L-1011 airplane, this study is investigating composite doubler design, fabrication, installation, structural integrity, and non-destructive evaluation. In addition to providing an overview of the L-1011 project, this paper focuses on a series of fatigue and strength tests which have been conducted in order to study the damage tolerance of composite doublers. Test results to-date are presented.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 1995,
month = 8
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • One major thrust in FAA`s National Aging Aircraft Research Program is to foster new technologies in civil aircraft maintenance. Recent DOD and other government developments in using bonded composite doublers on metal structures support the need for validation of such doubler applications on US certificated airplanes. In this study, a specific composite application was chosen on an L-1011 aircraft. Primary inspection requirements for these doublers include identifying disbonds between composite laminate and aluminum parent material, and delaminations in the composite laminate. Surveillance of cracks or corrosion in the parent aluminum material beneath the double is also a concern. No singlemore » NDI method can inspect for every flaw type, therefore we need to know NDI capabilities and limitations. This paper reports on a series of NDI tests conducted on laboratory test structures and on a fuselage section from a retired L-1011. Application of ultrasonics, x-ray, and eddy current to composite doublers and results from test specimens loaded to provide a changing flaw profile, are presented in this paper. Development of appropriate inspection calibration standards are also discussed.« less
  • Composite doublers, or repair patches, provide an innovative repair technique which can enhance the way aircraft are maintained. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is possible to bond a single Boron-Epoxy composite doubler to the damaged structure. Most of the concerns surrounding composite doubler technology pertain to long-term survivability, especially in the presence of non-optimum installations, and the validation of appropriate inspection procedures. This report focuses on a series of full-scale structural and nondestructive inspection (NDI) tests that were conducted to investigate the performance of Boron-Epoxy composite doublers. Full-scale tests were conductedmore » on fuselage panels cut from retired aircraft. These full-scale tests studied stress reductions, crack mitigation, and load transfer capabilities of composite doublers using simulated flight conditions of cabin pressure and axial stress. Also, structures which modeled key aspects of aircraft structure repairs were subjected to extreme tension, shear and bending loads to examine the composite laminate's resistance to disbond and delamination flaws. Several of the structures were loaded to failure in order to determine doubler design margins. Nondestructive inspections were conducted throughout the test series in order to validate appropriate techniques on actual aircraft structure. The test results showed that a properly designed and installed composite doubler is able to enhance fatigue life, transfer load away from damaged structure, and avoid the introduction of new stress risers (i.e. eliminate global reduction in the fatigue life of the structure). Comparisons with test data obtained prior to the doubler installation revealed that stresses in the parent material can be reduced 30%--60% through the use of the composite doubler. Tests to failure demonstrated that the bondline is able to transfer plastic strains into the doubler and that the parent aluminum skin must experience significant yield strains before any damage to the doubler will occur.« less
  • Composite doublers are gaining popularity for their ability to repair and reinforce commercial aircraft structures and it is anticipated that the potential cost savings may spur wider use of this technology. But before composite doublers can be accepted by the civil aviation industry, inspection techniques must be developed to verify the integrity of the doubler and the parent material under the doubler. The Federal Aviation Administration Airworthiness Assurance NDI Validation Center (AANC) is currently developing test methods to inspect aircraft structures under composite doublers using low kilovoltage radiography. This paper documents the radiographic techniques developed by the AANC which havemore » been found to give the best contrast of the radiographic image with reduced image distortion.« less
  • The number of commercial airframes exceeding twenty years of service continues to grow. In addition, Service Life Extension Programs are attempting to extend the {open_quotes}economic{close_quotes} service life of commercial airframes to thirty years. The use of bonded composites may offer the airframe manufacturers and aircraft maintenance facilities a cost effective method to extend the lives of their aircraft. The Federal Aviation Administration Assurance NDI Validation Center (AANC) to validate the use of bonded composite doublers on commercial aircraft.
  • Advanced fiber composites such as boron/epoxy can be employed as adhesively bonded patches to repair or to reinforce metallic aerospace components. This approach provides many advantages over conventional mechanically fastened metallic patches, including improved fatigue behavior, reduced corrosion and easy conformance to complex aerodynamic contours. Bonded composite repairs have been shown to provide high levels of bond durability under aircraft operating conditions. The recent application of bonded composite repairs to military and civil aircraft is described.