skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Defect-free thin film membranes for H2 separation and isolation.

Conference ·
OSTI ID:952794

There is a great need for robust, defect-free, highly selective molecular sieve (zeolite) thin film membranes for light gas molecule separations in hydrogen fuel production from CH{sub 4} or H{sub 2}O sources. In particular, we are interested in (1) separating and isolating H{sub 2} from H{sub 2}O and CH{sub 4}, CO, CO{sub 2}, O{sub 2}, N{sub 2} gases; (2) water management in PEMs and (3) as a replacement for expensive Pt catalysts needed for PEMs. Current hydrogen separation membranes are based on Pd alloys or on chemically and mechanically unstable organic polymer membranes. The use of molecular sieves brings a stable (chemically and mechanically stable) inorganic matrix to the membrane [1-3]. The crystalline frameworks have 'tunable' pores that are capable of size exclusion separations. The frameworks are made of inorganic oxides (e.g., silicates, aluminosilicates, and phosphates) that bring different charge and electrostatic attraction forces to the separation media. The resultant materials have high separation abilities plus inherent thermal stability over 600 C and chemical stability. Furthermore, the crystallographically defined (<1 {angstrom} deviation) pore sizes and shapes allow for size exclusion of very similarly sized molecules. In contrast, organic polymer membranes are successful based on diffusion separations, not size exclusion. We envision the impact of positive results from this project in the near term with hydrocarbon fuels, and long term with biomass fuels. There is a great need for robust, defect-free, highly selective molecular sieve (zeolite) thin film membranes for light gas molecule separations in hydrogen fuel production from CH{sub 4} or H{sub 2}O sources. They contain an inherent chemical, thermal and mechanical stability not found in conventional membrane materials. Our goal is to utilize those zeolitic qualities in membranes for the separation of light gases, and to eventually partner with industry to commercialize the membranes. To date, we have successfully: (1) Demonstrated (through synthesis, characterization and permeation testing) both the ability to synthesize defect-free zeolitic membranes and use them as size selective gas separation membranes; these include aluminosilicates and silicates; (2) Built and operated our in-house light gas permeation unit; we have amended it to enable testing of H{sub 2}S gases, mixed gases and at high temperatures. We are initiating further modification by designing and building an upgraded unit that will allow for temperatures up to 500 C, steady-state vs. pressure driven permeation, and mixed gas resolution through GC/MS analysis; (3) Have shown in preliminary experiments high selectivity for H{sub 2} from binary and industrially-relevant mixed gas streams under low operating pressures of 16 psig; (4) Synthesized membranes on commercially available oxide and composite disks (this is in addition to successes we have in synthesizing zeolitic membranes to tubular supports [9]); and (5) Signed a non-disclosure agreement with industrial partner G. E. Dolbear & Associates, Inc., and have ongoing agreements with Pall Corporation for in-kind support supplies and interest in scale-up for commercialization.

Research Organization:
Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC04-94AL85000
OSTI ID:
952794
Report Number(s):
SAND2004-2212C; TRN: US200914%%108
Resource Relation:
Conference: Proposed for presentation at the 14th International Zeolite Conference held April 25-30, 2004 in Cape Town, South Africa.
Country of Publication:
United States
Language:
English