First Observation of an Electron Beam Emitted from a Diamond Amplified cathode
We observed, for the first time, the emission of an electron beam from a hydrogenated diamond in the emission mode on a phosphor screen. Our experimental device is based on the following concept: the primary electrons of a few keV energy generate a large number of secondary electron-hole pairs in a hydrogenated diamond, and then the secondary electrons are transmitted to the opposite face of the diamond and emitted from its negative-electron-affinity (NEA) surface. Under our present conditions, the maximum emission gain of the primary electron is about 40, and the bunch charge is 50pC/0.5mm{sup 2}. Our achievement led to new understanding of the hydrogenated surface of the diamond. We propose an electron-trapping mechanism near the hydrogenated surface. The probability of electron trapping in our tests is about 70%. The hydrogenated diamond was demonstrated to be extremely robust. After exposure to air for days, the sample exhibited no observable degradation in emission.
- Research Organization:
- Brookhaven National Laboratory
- Sponsoring Organization:
- Doe - Office Of Science
- DOE Contract Number:
- AC02-98CH10886
- OSTI ID:
- 952534
- Report Number(s):
- BNL--81805-2009-CP; KB0202011
- Country of Publication:
- United States
- Language:
- English
Similar Records
DIAMOND AMPLIFIED PHOTOCATHODES.
Electron Beam Emission from a Diamond-Amplifier Cathode