Development of a sensor for polypropylene degradation products.
This paper presents the development of a sensor to detect the oxidative and radiation induced degradation of polypropylene. Recently we have examined the use of crosslinked assemblies of nanoparticles as a chemiresistor-type sensor for the degradation products. We have developed a simple method that uses a siloxane matrix to fabricate a chemiresistor-type sensor that minimizes the swelling transduction mechanism while optimizing the change in dielectric response. These sensors were exposed with the use of a gas chromatography system to three previously identified polypropylene degradation products including 4-methyl-2-pentanone, acetone, and 2-pentanone. The limits of detection 210 ppb for 4-methy-2-pentanone, 575 ppb for 2-pentanone, and the LoD was unable to be determined for acetone due to incomplete separation from the carbon disulfide carrier.
- Research Organization:
- Sandia National Laboratories
- Sponsoring Organization:
- USDOE
- DOE Contract Number:
- AC04-94AL85000
- OSTI ID:
- 952359
- Report Number(s):
- SAND2009-2118C
- Country of Publication:
- United States
- Language:
- English
Similar Records
Chemiresistor urea sensor