Summary report : direct approaches for recycling carbon dioxide into synthetic fuel.
- Sandia National Laboratories, Livermore, CA
The consumption of petroleum by the transportation sector in the United States is roughly equivalent to petroleum imports into the country, which have totaled over 12 million barrels a day every year since 2004. This reliance on foreign oil is a strategic vulnerability for the economy and national security. Further, the effect of unmitigated CO{sub 2} releases on the global climate is a growing concern both here and abroad. Independence from problematic oil producers can be achieved to a great degree through the utilization of non-conventional hydrocarbon resources such as coal, oil-shale and tarsands. However, tapping into and converting these resources into liquid fuels exacerbates green house gas (GHG) emissions as they are carbon rich, but hydrogen deficient. Revolutionary thinking about energy and fuels must be adopted. We must recognize that hydrocarbon fuels are ideal energy carriers, but not primary energy sources. The energy stored in a chemical fuel is released for utilization by oxidation. In the case of hydrogen fuel the chemical product is water; in the case of a hydrocarbon fuel, water and carbon dioxide are produced. The hydrogen economy envisions a cycle in which H{sub 2}O is re-energized by splitting water into H{sub 2} and O{sub 2}, by electrolysis for example. We envision a hydrocarbon analogy in which both carbon dioxide and water are re-energized through the application of a persistent energy source (e.g. solar or nuclear). This is of course essentially what the process of photosynthesis accomplishes, albeit with a relatively low sunlight-to-hydrocarbon efficiency. The goal of this project then was the creation of a direct and efficient process for the solar or nuclear driven thermochemical conversion of CO{sub 2} to CO (and O{sub 2}), one of the basic building blocks of synthetic fuels. This process would potentially provide the basis for an alternate hydrocarbon economy that is carbon neutral, provides a pathway to energy independence, and is compatible with much of the existing fuel infrastructure.
- Research Organization:
- Sandia National Laboratories
- Sponsoring Organization:
- USDOE
- DOE Contract Number:
- AC04-94AL85000
- OSTI ID:
- 952162
- Report Number(s):
- SAND2009-0399
- Country of Publication:
- United States
- Language:
- English
Similar Records
Is Nuclear Power Also the Key to Economically Clean Coal Gasification?
Adding value to coal as feedstock for a hydrogen plant
Related Subjects
02 PETROLEUM
08 HYDROGEN
10 SYNTHETIC FUELS
32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION
45 MILITARY TECHNOLOGY, WEAPONRY, AND NATIONAL DEFENSE
Automobiles-Fuel consumption.
CARBON
CARBON DIOXIDE
CLIMATES
COAL
EFFICIENCY
ELECTROLYSIS
ENERGY SOURCES
Energy consumption-Statistics-Periodicals.
HYDROCARBONS
HYDROGEN
HYDROGEN FUELS
IMPORTS
LIQUID FUELS
NATIONAL SECURITY
OXIDATION
PETROLEUM
PHOTOSYNTHESIS
Petroleum-Energy consumption-Trends.
RECYCLING
SYNTHETIC FUELS
Synthetic fuels.
TRANSPORTATION SECTOR
WATER