Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Probing Hot Electron Flow Generated on Pt Nanoparticles with Au/TiO2 Schottky Diodes during Catalytic CO Oxidation

Journal Article · · Nano Letters
DOI:https://doi.org/10.1021/nl8012456· OSTI ID:951959

Hot electron flow generated on colloid platinum nanoparticles during exothermic catalytic carbon monoxide oxidation was directly detected with Au/TiO{sub 2} diodes. Although Au/TiO{sub 2} diodes are not catalytically active, platinum nanoparticles on Au/TiO{sub 2} exhibit both chemicurrent and catalytic turnover rate. Hot electrons are generated on the surface of the metal nanoparticles and go over the Schottky energy barrier between Au and TiO{sub 2}. The continuous Au layer ensures that the metal nanoparticles are electrically connected to the device. The overall thickness of the metal assembly (nanoparticles and Au thin film) is comparable to the mean free path of hot electrons, resulting in ballistic transport through the metal. The chemicurrent and chemical reactivity of nanoparticles with citrate, hexadecylamine, hexadecylthiol, and TTAB (Tetradecyltrimethylammonium Bromide) capping agents were measured during catalytic CO oxidation at pressures of 100 Torr O{sub 2} and 40 Torr CO at 373-513 K. We found that chemicurrent yield varies with each capping agent, but always decreases with increasing temperature. We suggest that this inverse temperature dependence is associated with the influence of charging effects due to the organic capping layer during hot electron transport through the metal-oxide interface.

Research Organization:
Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US)
Sponsoring Organization:
Chemical Sciences Division
DOE Contract Number:
AC02-05CH11231
OSTI ID:
951959
Report Number(s):
LBNL-1784E
Journal Information:
Nano Letters, Journal Name: Nano Letters
Country of Publication:
United States
Language:
English

Similar Records

The Role of Organic Capping Layers of Platinum Nanoparticles in Catalytic Activity of CO Oxidation
Journal Article · Tue Dec 16 23:00:00 EST 2008 · Catalysis Letters · OSTI ID:972278

Hydrogen Oxidation-Driven Hot Electron Flow Detected by Catalytic Nanodiodes
Journal Article · Mon Jul 20 00:00:00 EDT 2009 · Nano Letters · OSTI ID:1012477

The Catalytic Nanodiode: Detecting Continous Electron Flow atOxide-Metal Interfaces Generated by a Gas-Phase Exothermic Reaction
Journal Article · Mon Oct 30 23:00:00 EST 2006 · Journal of Physical Chemistry B · OSTI ID:919826