skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Gaussian Basis Set and Planewave Relativistic Spin-Orbit Methods in NWChem

Journal Article · · Journal of Chemical Theory and Computation, 5(3):491-499
DOI:https://doi.org/10.1021/ct8002892· OSTI ID:951835

Relativistic spin-orbit density functional theory (DFT) methods have been implemented in the molecular Gaussian DFT and pseudopotential plane-wave DFT modules of the NWChem electronic-structure program. The Gaussian basis set implementation is based upon the zeroth-order regular approximation (ZORA) while the planewave implementation uses spin-orbit pseudopotentials that are directly generated from the atomic Dirac-Kohn-Sham wavefunctions or atomic ZORA-Kohn-Sham wavefunctions. Compared to solving the full Dirac equation these methods are computationally efficient, but robust enough for a realistic description of relativistic effects such as spin-orbit splitting, molecular orbital hybridization, and core effects. Both methods have been applied to a variety of small molecules, including I$$_{\text{2}}$$, IF, HI, Br$$_{\text{2}}$$, Bi$$_{\text{2}}$$, AuH, and Au$$_{\text{2}}$$, using various exchange-correlation functionals. Our results are in good agreement with experiment and previously reported calculations.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
951835
Report Number(s):
PNNL-SA-61552; 29990; KC0302030; TRN: US200913%%71
Journal Information:
Journal of Chemical Theory and Computation, 5(3):491-499, Vol. 5, Issue 3
Country of Publication:
United States
Language:
English