Intermediate Strain-Rate Loading - Techniques and Applications
- Sandia National Laboratories
A new test methodology is described which allows access to loading rates that lie between split Hopkinson bar and shock-loading techniques. Gas gun experiments combined with velocity interferometry techniques have been used to experimentally determine the intermediate strain-rate loading behavior of Coors AD995 alumina and Cercom silicon-carbide rods. Graded-density materials have been used as impactors; thereby eliminating the tension states generated by the radial stress components during the loading phase. Results of these experiments demonstrate that the time-dependent stress pulse generated during impact allows an efficient transition from the initial uniaxial strain loading to a uniaxial stress state as the stress pulse propagates through the rod. This allows access to intermediate loading rates over 5 x 10{sup 3}/s to a few times 10{sup 4}/s.
- Research Organization:
- Sandia National Labs., Albuquerque, NM (US); Sandia National Labs., Livermore, CA (US)
- Sponsoring Organization:
- US Department of Energy (US)
- DOE Contract Number:
- AC04-94AL85000
- OSTI ID:
- 9510
- Report Number(s):
- SAND99-0537C
- Country of Publication:
- United States
- Language:
- English
Similar Records
Intermediate strain-rate loading experiments -- Techniques and applications
Impact of AD995 alumina rods