skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Uranium Speciation As a Function of Depth in Contaminated Hanford Sediments - A Micro-XRF, Micro-XRD, and Micro- And Bulk-XAFS Study

Journal Article · · Environmental Science and Technology
DOI:https://doi.org/10.1021/es8021045· OSTI ID:950166
 [1];  [2];  [3]
  1. Stanford Univ., CA (United States)
  2. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  3. SLAC National Accelerator Lab., Menlo Park, CA (United States)

Processing ponds at the Hanford, Washington Area 300 site were used for storing basic sodium aluminate and acidic U(VI)-Cu(II)-containing waste from 1943 to 1975. One result of this use is a groundwater plume containing elevated levels of U and Cu beneath the dry ponds and adjacent to the Columbia River. We have used synchrotron-based micro-X-ray fluorescence (μXRF) imaging, micro-X-ray absorption fine structure (μXANES) spectroscopy, and micro-X-ray diffraction (μXRD) techniques combined with bulk U LIII-edge X-ray absorption fine structure (XAFS) spectroscopy to determine the distribution and speciation of U and Cu through the vadose and groundwater zones beneath North Processing Pond #2 (NPP2). Sediment samples were collected from the vadose zone (8’ and 12’ depths), and a sample from the groundwater zone was collected just below the water table (12’-14’ depth). μXRF imaging revealed two major U occurrences within the vadose and groundwater zones: (1) low to moderate concentrations of U(VI) associated with mineral surfaces (particularly chlorite), and (2) high concentration U(VI)-containing micron-sized particles associated with surface coatings on grains of muscovite and chlorite. These U(VI) hot spots are frequently spatially correlated with Cu(II) hot spots. In the groundwater zone, these particles were identified as the copper-uranyl-silicate cuprosklodowskite and the cupper-uranyl-phosphate metatorbernite. In contrast, the U-Cu-containing particles are X-ray amorphous in the vadose zone. Fits of U LIII-edge XAFS spectra by linear-combination fitting indicate that U speciation consists of ~ 75% uranyl sorbed to clays and ~25% metatorbernite-like X-ray amorphous U-Cu-phosphates (8’ depth); nearly 100% sorbed uranyl (12’ depth); and ~70% sorbed uranyl and ~30% cuprosklodowskite/metatorbernite (ground water zone). These findings suggest that the dissolution of U(VI)-Cu(II)-bearing solids as well as the desorption of U(VI), mainly from phyllosilicates, are important sources of U(VI) in the Area 300 groundwater plume.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
950166
Report Number(s):
PNNL-SA-61175; KP1504010; TRN: US0901966
Journal Information:
Environmental Science and Technology, Vol. 43, Issue 3; ISSN 0013-936X
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English