Multiple Exciton Generation in Semiconductor Nanocrystals: Toward Efficient Solar Energy Conversion
Journal Article
·
· Laser and Photonics Reviews
Within the range of photon energies illuminating the Earth's surface, absorption of a photon by a conventional photovoltaic semiconductor device results in the production of a single electron-hole pair; energy of a photon in excess of the semiconductor's bandgap is efficiently converted to heat through interactions between the electron and hole with the crystal lattice. Recently, colloidal semiconductor nanocrystals and nanocrystal films have been shown to exhibit efficient multiple electron-hole pair generation from a single photon with energy greater than twice the effective band gap. This multiple carrier pair process, referred to as multiple exciton generation (MEG), represents one route to reducing the thermal loss in semiconductor solar cells and may lead to the development of low cost, high efficiency solar energy devices. We review the current experimental and theoretical understanding of MEG, and provide views to the near-term future for both fundamental research and the development of working devices which exploit MEG.
- Research Organization:
- National Renewable Energy Laboratory (NREL), Golden, CO.
- Sponsoring Organization:
- USDOE
- DOE Contract Number:
- AC36-99GO10337
- OSTI ID:
- 950131
- Journal Information:
- Laser and Photonics Reviews, Journal Name: Laser and Photonics Reviews Journal Issue: 5, 2008 Vol. 2
- Country of Publication:
- United States
- Language:
- English
Similar Records
Multiple Exciton Generation in Colloidal Silicon Nanocrystals
Quantum Dot Solar Cells: High Efficiency through Multiple Exciton Generation
National Solar Technology Roadmap: Multiple-Exciton-Generation PV
Journal Article
·
Sun Dec 31 23:00:00 EST 2006
· Nano Letters
·
OSTI ID:982283
Quantum Dot Solar Cells: High Efficiency through Multiple Exciton Generation
Conference
·
Fri Dec 31 23:00:00 EST 2004
·
OSTI ID:860690
National Solar Technology Roadmap: Multiple-Exciton-Generation PV
Technical Report
·
Fri Jun 01 00:00:00 EDT 2007
·
OSTI ID:1217378