Toward a Monte Carlo program for simulating vapor-liquid phase equilibria from first principles
Journal Article
·
· Computer Physics Communication, vol. 169, no. 1-3, April 1, 2005, pp. 8
OSTI ID:950086
Efficient Monte Carlo algorithms are combined with the Quickstep energy routines of CP2K to develop a program that allows for Monte Carlo simulations in the canonical, isobaric-isothermal, and Gibbs ensembles using a first principles description of the physical system. Configurational-bias Monte Carlo techniques and pre-biasing using an inexpensive approximate potential are employed to increase the sampling efficiency and to reduce the frequency of expensive ab initio energy evaluations. The new Monte Carlo program has been validated through extensive comparison with molecular dynamics simulations using the programs CPMD and CP2K. Preliminary results for the vapor-liquid coexistence properties (T = 473 K) of water using the Becke-Lee-Yang-Parr exchange and correlation energy functionals, a triple-zeta valence basis set augmented with two sets of d-type or p-type polarization functions, and Goedecker-Teter-Hutter pseudopotentials are presented. The preliminary results indicate that this description of water leads to an underestimation of the saturated liquid density and heat of vaporization and, correspondingly, an overestimation of the saturated vapor pressure.
- Research Organization:
- Lawrence Livermore National Laboratory (LLNL), Livermore, CA
- Sponsoring Organization:
- USDOE
- DOE Contract Number:
- W-7405-ENG-48
- OSTI ID:
- 950086
- Report Number(s):
- UCRL-JRNL-208404
- Journal Information:
- Computer Physics Communication, vol. 169, no. 1-3, April 1, 2005, pp. 8, Journal Name: Computer Physics Communication, vol. 169, no. 1-3, April 1, 2005, pp. 8 Journal Issue: 1-3 Vol. 169
- Country of Publication:
- United States
- Language:
- English
Similar Records
Liquid Water from First Principles: Validation of Different Sampling Approaches
Isobaric-isothermal Monte Carlo simulations from first principles: Application to liquid water at ambient conditions
Vapor-liquid Coexistence Curves for Methanol and Methane using Dispersion-Corrected Density Functional Theory
Journal Article
·
Thu May 20 00:00:00 EDT 2004
· Journal of Physical Chemistry B: Materials, Surfaces, Interfaces, amp Biophysical
·
OSTI ID:15014181
Isobaric-isothermal Monte Carlo simulations from first principles: Application to liquid water at ambient conditions
Journal Article
·
Wed Dec 01 23:00:00 EST 2004
· ChemPhysChem
·
OSTI ID:950083
Vapor-liquid Coexistence Curves for Methanol and Methane using Dispersion-Corrected Density Functional Theory
Journal Article
·
Thu Oct 13 00:00:00 EDT 2011
· Journal of Physical Chemistry B
·
OSTI ID:1028544