skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Experimental and Sampling Design for the INL-2 Sample Collection Operational Test

Technical Report ·
DOI:https://doi.org/10.2172/949908· OSTI ID:949908

This report describes the experimental and sampling design developed to assess sampling approaches and methods for detecting contamination in a building and clearing the building for use after decontamination. An Idaho National Laboratory (INL) building will be contaminated with BG (Bacillus globigii, renamed Bacillus atrophaeus), a simulant for Bacillus anthracis (BA). The contamination, sampling, decontamination, and re-sampling will occur per the experimental and sampling design. This INL-2 Sample Collection Operational Test is being planned by the Validated Sampling Plan Working Group (VSPWG). The primary objectives are: 1) Evaluate judgmental and probabilistic sampling for characterization as well as probabilistic and combined (judgment and probabilistic) sampling approaches for clearance, 2) Conduct these evaluations for gradient contamination (from low or moderate down to absent or undetectable) for different initial concentrations of the contaminant, 3) Explore judgment composite sampling approaches to reduce sample numbers, 4) Collect baseline data to serve as an indication of the actual levels of contamination in the tests. A combined judgmental and random (CJR) approach uses Bayesian methodology to combine judgmental and probabilistic samples to make clearance statements of the form "X% confidence that at least Y% of an area does not contain detectable contamination” (X%/Y% clearance statements). The INL-2 experimental design has five test events, which 1) vary the floor of the INL building on which the contaminant will be released, 2) provide for varying the amount of contaminant released to obtain desired concentration gradients, and 3) investigate overt as well as covert release of contaminants. Desirable contaminant gradients would have moderate to low concentrations of contaminant in rooms near the release point, with concentrations down to zero in other rooms. Such gradients would provide a range of contamination levels to challenge the sampling, sample extraction, and analytical methods to be used in the INL-2 study. For each of the five test events, the specified floor of the INL building will be contaminated with BG using a point-release device located in the room specified in the experimental design. Then quality control (QC), reference material coupon (RMC), judgmental, and probabilistic samples will be collected according to the sampling plan for each test event. Judgmental samples will be selected based on professional judgment and prior information. Probabilistic samples were selected with a random aspect and in sufficient numbers to provide desired confidence for detecting contamination or clearing uncontaminated (or decontaminated) areas. Following sample collection for a given test event, the INL building will be decontaminated. For possibly contaminated areas, the numbers of probabilistic samples were chosen to provide 95% confidence of detecting contaminated areas of specified sizes. For rooms that may be uncontaminated following a contamination event, or for whole floors after decontamination, the numbers of judgmental and probabilistic samples were chosen using the CJR approach. The numbers of samples were chosen to support making X%/Y% clearance statements with X = 95% or 99% and Y = 96% or 97%. The experimental and sampling design also provides for making X%/Y% clearance statements using only probabilistic samples. For each test event, the numbers of characterization and clearance samples were selected within limits based on operational considerations while still maintaining high confidence for detection and clearance aspects. The sampling design for all five test events contains 2085 samples, with 1142 after contamination and 943 after decontamination. These numbers include QC, RMC, judgmental, and probabilistic samples. The experimental and sampling design specified in this report provides a good statistical foundation for achieving the objectives of the INL-2 study.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
949908
Report Number(s):
PNNL-18187; 400904120; TRN: US200909%%560
Country of Publication:
United States
Language:
English