skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Large eddy simulation of turbulent channel flows by the rational LES model.

Journal Article · · Phys. Fluids
DOI:https://doi.org/10.1063/1.1604781· OSTI ID:949623

The rational large eddy simulation (RLES) model is applied to turbulent channel flows. This approximate deconvolution model is based on a rational (subdiagonal Pade) approximation of the Fourier transform of the Gaussian filter and is proposed as an alternative to the gradient (also known as the nonlinear or tensor-diffusivity) model. We used a spectral element code to perform large eddy simulations of incompressible channel flows at Reynolds numbers based on the friction velocity and the channel half-width Re{sub {tau}} = 180 and Re{sub {tau}} = 395. We compared the RLES model with the gradient model and the Smagorinsky model with Van Driest damping. The RLES model was much more stable than the gradient model and yielded improved results. Both the RLES model and the gradient model predicted the off-diagonal Reynolds stresses better than the Smagorinsky model with Van Driest damping. The latter, however, yielded better results for the diagonal Reynolds stresses.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
DE-AC02-06CH11357
OSTI ID:
949623
Report Number(s):
ANL/MCS/JA-42615; TRN: US201012%%407
Journal Information:
Phys. Fluids, Vol. 15, Issue 10 ; Oct. 2003
Country of Publication:
United States
Language:
ENGLISH

Similar Records

Backscatter in the rational LES model.
Journal Article · Tue Jun 01 00:00:00 EDT 2004 · Comput. Fluids · OSTI ID:949623

Large Eddy Simulations using Lattice Boltzmann algorithms. Final report
Technical Report · Tue Sep 28 00:00:00 EDT 1993 · OSTI ID:949623

Non-Boussinesq subgrid-scale model with dynamic tensorial coefficients
Journal Article · Mon Jul 11 00:00:00 EDT 2022 · Physical Review Fluids (Online) · OSTI ID:949623